OSTEOGENIC PROTEIN-1 PROMOTES THE FORMATION OF TISSUE-ENGINEERED CARTILAGE USING THE ALGINATE-RECOVERED-CHONDROCYTE METHOD

+*Departments of Biochemistry and Orthopedic Surgery, Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL. 1653 West Congress Parkway, 312-942-4661, Fax: 312-942-3053, kmasuda@rush.edu

INTRODUCTION

Most attempts to form cartilage in vitro use cells cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method) for the production of cartilaginous tissue in vitro that does not require exogenous matrices [1]. The first step consists of culturing phenotypically stable chondrocytes under conditions optimal for the formation of a cell-associated matrix (CM). The second step allows these cells with their CM to rapidly form and become integrated into a solid mass of cartilage on a porous insert. Cartilage tissue engineered in vitro using this approach is softer than normal cartilage: it is rich in proteoglycan (PG), mostly aggrecan and has an immature collagen network. We also have shown that recombinant human osteogenic protein-1 (OP-1) can stimulate PG and collagen synthesis by human and bovine articular chondrocytes. OP-1 promotes both the rate of formation and the size of the CM by these cells. The enhancement of matrix formation in the CM might enable the application of the tissue-engineered tissue to a larger area. For application in humans, the enhancement of the CM formation is preferable, because matrix formation by cells from aged cartilage is limited.

We present here the results of a study aimed at testing the hypothesis that exposure of young adult articular chondrocytes to OP-1 promotes the formation of cartilaginous tissue engineered for transplantation using the ARC method.

MATERIALS AND METHODS

The ARC Method was used as follows to form cartilage in vitro.

Step 1: Assessment of Formation of the CM in Alginate Beads

Bovine articular chondrocytes from the metacarpophalangeal joints of 14-18 month old steer were isolated by sequential enzyme digestion. Chondrocytes were cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method). Most attempts to form cartilage use cells cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method) for the production of cartilaginous tissue in vitro that does not require exogenous matrices [1]. The first step consists of culturing phenotypically stable chondrocytes under conditions optimal for the formation of a cell-associated matrix (CM). The second step allows these cells with their CM to rapidly form and become integrated into a solid mass of cartilage on a porous insert. Cartilage tissue engineered in vitro using this approach is softer than normal cartilage: it is rich in proteoglycan (PG), mostly aggrecan and has an immature collagen network. We also have shown that recombinant human osteogenic protein-1 (OP-1) can stimulate PG and collagen synthesis by human and bovine articular chondrocytes. OP-1 promotes both the rate of formation and the size of the CM by these cells. The enhancement of matrix formation in the CM might enable the application of the tissue-engineered tissue to a larger area. For application in humans, the enhancement of the CM formation is preferable, because matrix formation by cells from aged cartilage is limited.

We present here the results of a study aimed at testing the hypothesis that exposure of young adult articular chondrocytes to OP-1 promotes the formation of cartilaginous tissue engineered for transplantation using the ARC method.

The ARC Method was used as follows to form cartilage in vitro.

Step 1: Assessment of Formation of the CM in Alginate Beads

Bovine articular chondrocytes from the metacarpophalangeal joints of 14-18 month old steer were isolated by sequential enzyme digestion. Chondrocytes were cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method). Most attempts to form cartilage use cells cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method) for the production of cartilaginous tissue in vitro that does not require exogenous matrices [1]. The first step consists of culturing phenotypically stable chondrocytes under conditions optimal for the formation of a cell-associated matrix (CM). The second step allows these cells with their CM to rapidly form and become integrated into a solid mass of cartilage on a porous insert. Cartilage tissue engineered in vitro using this approach is softer than normal cartilage: it is rich in proteoglycan (PG), mostly aggrecan and has an immature collagen network. We also have shown that recombinant human osteogenic protein-1 (OP-1) can stimulate PG and collagen synthesis by human and bovine articular chondrocytes. OP-1 promotes both the rate of formation and the size of the CM by these cells. The enhancement of matrix formation in the CM might enable the application of the tissue-engineered tissue to a larger area. For application in humans, the enhancement of the CM formation is preferable, because matrix formation by cells from aged cartilage is limited.

The ARC Method was used as follows to form cartilage in vitro.

Step 1: Assessment of Formation of the CM in Alginate Beads

Bovine articular chondrocytes from the metacarpophalangeal joints of 14-18 month old steer were isolated by sequential enzyme digestion. Chondrocytes were cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method). Most attempts to form cartilage use cells cultured within or on a biological or synthetic scaffold. We have developed a novel two-step culture method (alginate-recovered-chondrocyte method, ARC method) for the production of cartilaginous tissue in vitro that does not require exogenous matrices [1]. The first step consists of culturing phenotypically stable chondrocytes under conditions optimal for the formation of a cell-associated matrix (CM). The second step allows these cells with their CM to rapidly form and become integrated into a solid mass of cartilage on a porous insert. Cartilage tissue engineered in vitro using this approach is softer than normal cartilage: it is rich in proteoglycan (PG), mostly aggrecan and has an immature collagen network. We also have shown that recombinant human osteogenic protein-1 (OP-1) can stimulate PG and collagen synthesis by human and bovine articular chondrocytes. OP-1 promotes both the rate of formation and the size of the CM by these cells. The enhancement of matrix formation in the CM might enable the application of the tissue-engineered tissue to a larger area. For application in humans, the enhancement of the CM formation is preferable, because matrix formation by cells from aged cartilage is limited.

We present here the results of a study aimed at testing the hypothesis that exposure of young adult articular chondrocytes to OP-1 promotes the formation of cartilaginous tissue engineered for transplantation using the ARC method.

Step 2: Characterization of Cartilage Tissue Formed In Vitro

The cells with their CM, recovered after 7 days of culture in alginate, were resuspended in complete medium containing 10% FBS or 10% FBS + OP-1 (100 ng/ml). The cells were cultured with OP-1 was approximately 4 times that of the tissue cultured with 10% FBS alone (Fig 2). The stimulatory effects of OP-1 on matrix formation were observed in both steps of the ARC method. As the ability of human adult chondrocytes to form a cohesive matrix is limited, the results suggest that human chondrocytes should be stimulated by growth factors, such as OP-1, when the goal is to produce cartilage tissue for transplantation using the ARC method.

RESULTS

Step 1: Formation of the CM in Alginate Beads

On day 7 of culture, the CM formed by chondrocytes cultured in the presence of OP-1 was more voluminous when observed under the microscope. The thickness of the tissue cultured with OP-1 was approximately 4 times that of the tissue cultured with 10% FBS alone (Fig 2). The stimulatory effects of OP-1 on matrix formation were observed in both steps of the ARC method. As the ability of human adult chondrocytes to form a cohesive matrix is limited, the results suggest that human chondrocytes should be stimulated by growth factors, such as OP-1, when the goal is to produce cartilage tissue for transplantation using the ARC method.

Table Biochemical Analyses of the Tissue-engineered Tissues

<table>
<thead>
<tr>
<th></th>
<th>10% FBS</th>
<th>10% FBS + OP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Weight</td>
<td>1.99 ± 0.08</td>
<td>3.91 ± 0.26 *</td>
</tr>
<tr>
<td>PG (µg/tissue)</td>
<td>171.4 ± 9.5</td>
<td>653.6 ± 17.4 *</td>
</tr>
<tr>
<td>Collagen (µg/tissue)</td>
<td>120.3 ± 3.8</td>
<td>304.7 ± 9.1 *</td>
</tr>
<tr>
<td>PG/Collagen (µg/µg)</td>
<td>1.43 ± 0.11</td>
<td>2.15 ± 0.04 *</td>
</tr>
<tr>
<td>HA (ng/tissue)</td>
<td>969.3 ± 34.9</td>
<td>1565.3 ± 87.3 *</td>
</tr>
</tbody>
</table>

(p < 0.01: vs 10%FBS, mean ± SD)

REFERENCES

ACKNOWLEDGMENTS

This study was supported by NIH grants 2-P50-AR-59329 and AG-04736 and by a grant from the Rush Arthritis and Orthopedics Institute.

*+Departments of Biochemistry, Orthopedic Surgery and Internal Medicine, Rush Medical College, Chicago, IL. **+Department of Orthopedic Surgery, Rush Medical College, Chicago, IL. ****Stryker Biotech, Hopkinton, MA.

Poster Session - Tissue Engineering - Hall E