INTRODUCTION

Osteosarcoma is a malignant bone tumor prevalent in adolescents. Although chemotherapy is effective in improvement of patient survival, the prognosis is poor. *Toona sinensis* Roem. (Meliaceae) is a deciduous tree of unusual form and texture, which grows mostly in Asia, especially in China. *T. sinensis* is the only Toona species in which the leaflet margins can be serrated to become serrulate. Our previous studies indicated that *Toona Sinensis* leaf aqueous extracts (TSLs) showed potent anti-proliferation effect on many types of cancer, including lung, melatonin, ovarian, oral, colon and liver. We preliminarily found that TSL showed a potential anti-survival effect on osteosarcoma cells while the mechanism remains well investigated. In this study, the effects of TSL and its mechanism were examined.

METHODS

Three osteosarcoma cell lines, SaOs-2, U2Os and MG-63, were used in this study. Normal primary human osteoblasts (hOBs) were also used in this study for comparison. Cell viability, cytotoxicity, apoptosis/necrosis staining and apoptosis related protein levels were examined by using MTT assay, lactate dehydrogenase (LDH) leakage, flow cytometry and Western blot, respectively.

RESULTS

The results showed that treatment of fraction of *Toona sinensis* (TSL-1) for 24 hrs resulted in significant inhibition of cell viability in MG-63, SaoS-2 and U2OS osteosarcoma cell lines (Fig. 1A), while that did not significantly cause the suppression of normal hOB cell viability (Fig. 1B). We further found that treatment of TSL-1 for 24 and 48 hrs significantly elevated the LDH leakage, and induced apoptosis and necrosis in MG-63 cells. Furthermore, the treatment of TSL-1 increased PARP cleavage in MG-63 cells. Most importantly, our results showed that TSL-1 up-regulated Bax/Bcl-2 protein ratio in MG-63 cells.

DISCUSSION

In conclusion, our study indicates that TSL-1 inhibited cell viability in osteosarcoma cell lines, but not in normal osteoblasts. Furthermore, our results showed that TSL-1 increased PARP cleavage and Bax/Bcl-2 protein ratio, indicating that the anti-survival mechanism might highly relate to apoptosis induction. In conclusion, our result indicates that TSL-1 inhibited cell survival of osteosarcoma, but not normal osteoblasts, suggesting that TSL-1 could be used as anticancer drug for alleviating osteosarcoma survival, but not affect normal osteoblast functions. The effect of TSL-1 on human osteosarcoma Xenografts will be further investigated.

Figure 1

A.

B.

Figure 2

A.

B.

Figure 3

A.

B.