Bacterial Suture Adherence and Biofilm Formation in an In-vivo Contaminated Wound Model

Michael R. Morris, MD¹, Christopher Bergum, BS², Nancy Jackson, PhD², David Markel, MD².
¹DMC/Providence Hospitals Orthopaedic Surgery Residency, Detroit, MI, USA, ²Providence Hospital Orthopaedic Surgery Research Laboratory, Southfield, MI, USA.

Disclosures: M. R. Morris: None. C. Bergum: None. N. Jackson: None. D. Markel: 1; Stryker. 2; Stryker. 4; Arboretum Ventures, Novi Bone and Joint, CORE Institute. 5; OREF, Stryker, Providence Hospital.

Introduction: Bacterial wound infections continue to be problematic for the orthopaedic surgeon. The choice of suture material has drawn scrutiny as a way to possibly reduce wound infection. Monofilament and barbed suture have been shown in in-vitro models to have less bacterial adherence than a braided suture. This study evaluates bacterial adherence to suture materials and tissue reactivity with a bioluminescent in-vivo mouse model.

Methods: We utilized a mouse air pouch model to simulate a joint environment. Bioluminescent Staphylococcus aureus were utilized to create an in-vivo contaminated wound model at two amounts (10^6 CFU & 10^8 CFU). Three types of commonly used absorbable suture were evaluated: braided, monofilament and barbed monofilament. Groups of 8 mice had two 1 cm strands of one of the suture types surgically placed into the air pouch followed by inoculation of either a high or low amount of the bioluminescent S. aureus. The mice were sacrificed on day 8. Bacterial suture adherence was evaluated with suture culture, a photon-capturing camera system, and scanning electron microscopy (SEM). Tissue reactivity was assessed through histology, RNA expression and protein expression.

Results: The braided suture group with the high amount of S. aureus exhibited frank purulence and air pouch hypertrophy in all 8 mice. In the low amount groups the infection was predominantly cleared across all suture types, but pouch thickness was increased. A significant difference between the optical density (OD) emitted per millimeter of suture was found between the suture groups with inoculation of high amounts of S. aureus (p<0.05). More specifically the braided group demonstrated higher ODs/mm than both the monofilament (p<0.005) and barbed monofilament groups (p<0.005). No difference was appreciated between the monofilament and barbed monofilament groups. SEM demonstrated biofilm in all high amount groups with the most robust in the braided suture group. Kruskal-Wallis test demonstrated a difference between groups in regards to levels of TNF (p<0.05) and IL-1 (p<0.05).

Discussion: We believe that this is the first in-vivo, contaminated wound model that provides information for the selection of suture material including barbed monofilament. Braided suture should be avoided when dealing with contaminated wounds or wounds at high risk of infection. Interestingly, this model demonstrated no difference between the use of monofilament and barbed monofilament sutures in a contaminated wound.

Significance: Reducing surgical wound complications is important not only in orthopaedic surgery, but all surgery. We have shown that suture selection may have some influence on infection, and may be a controllable factor.
ORS 2015 Annual Meeting
Poster No: 1908