TGFβ STIMULATES CYCLIN D1 EXPRESSION IN CHONDROCYTES THROUGH ACTIVATION OF β-CATENIN SIGNALING

Li, T.F.; Chen, M.; Wu, Q.; Sheu, T.J.; Drissi, H.; Zusckik, M.; Chen, D.; and +O’Keefe, R.J.

+ Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry Rochester, NY

Introduction:
TGF-β is an important regulator of the endochondral ossification. TGF-β inhibits colX, alkaline phosphatase, MMP13 and other genes associated with chondrocyte maturation in various cell culture models. Mice deficient in TGF-β signaling are normal until 4 weeks of age. At that point, Smad3−/− mice and mice over-expressing dominant-negative TβRII develop disorganized growth plates with premature chondrocyte maturation and reduce long bone growth.

In addition to its inhibitory effects on maturation, TGF-β also stimulates chondrocyte proliferation. While prior studies have established p38 kinase/ATF-2 as a downstream mediator of TGF-β effects on proliferation, mice deficient in Smad3 signaling also have reduced proliferation. Thus, Smad3 is a potential regulator of proliferation in chondrocytes. The current study examines mechanisms involved in a Smad3 mediated proliferation and establishes that effects are mediated through an induction of β-catenin with subsequent induction of the cyclin D1 gene.

Materials and Methods
Methods used in this study include in vivo and in vitro BrdU labeling, transient transfection and luciferase assay with TopFlash and cyclin D reporters, real time PCR using RotorGene DNA amplification system, western blot with antibodies against axin, cyclin D1, total β-catenin, and active form β-catenin, immunoprecipitation of Smad3 and β-catenin using Catch and Release System from Upstate, double immunofluorescence labeling and confocal microscopy for the colocalization of Smad3 and β-catenin.

Sternal chondrocytes were isolated from Smad3−/− and Smad3+/+ neonatal mice of 3-days old. Western blotting and transient transfection experiments were performed in these cells. Chondrocytes from β-catenin reporter (Topgal) mice were treated with TGF-β and galactosidase activity was examined. Adenoviral construct expressing β-catenin was generated using Gateway adenovirus system, amplified in 293A cells, and purified using traditional CsCl binding method.

Results:
TGF-β stimulates β-catenin expression and signaling
Mouse sternal chondrocytes isolated from Topgal transgenic mice were treated with various concentrations of TGF-β for 24 hours. Treatment with TGF-β resulted in a dose-dependent stimulation of β-galactosidase activity with maximal effects observed at 5ng/ml where a 2-fold induction occurred. Consistent with these findings, TGF-β (2ng/ml) increased β-catenin protein levels in a time-dependent manner (0-8h) in primary mouse sternal chondrocytes and in C5.18 chondrocytes. Protein levels of β-catenin were increased within 15 minutes and reached maximal level after 2 hours. In contrast, TGF-β had no effect on β-catenin mRNA expression in either primary cells or C5.18 chondrocytes.

Smad3 associates with β-catenin and regulates its expression.
To determine whether Smad3 is involved in the regulation of β-catenin protein levels and signaling, β-catenin expression was examined in Smad3−/− chondrocytes. In Smad3−/− chondrocytes, β-catenin protein levels were significantly reduced compared with wild type chondrocytes. To examine if direct Smad3/β-catenin interactions are involved the induction of β-catenin by TGF-β, C5.18 chondrocytes were cultured in the presence or absence of TGF-β for 30 minutes and cell lysates were immunoprecipitated with anti-Smad3 antibody followed by Western blot using an anti-β-catenin antibody. Minimal association between Smad3 and β-catenin was observed in the absence of TGF-β. In contrast, TGF-β stimulated a strong interaction between Smad3 and β-catenin. Similar results were also obtained when anti-Smad3 antibody was utilized in the immunoprecipitation assay. Finally, co-localization experiments using double immunofluorescence labeling and confocal microscopy demonstrate that under basal conditions, both Smad3 and β-catenin localize to the cytoplasm. However, within 30-minutes following TGF-β stimulation, Smad3 and β-catenin co-localize within the nucleus.

β-TrCP mediated catabolism of β-catenin is inhibited by Smad3
β-TrCP is an E3 ligase in the SCFβ-TrCP complex that promotes β-catenin degradation in many cell types. Similarly, we found that transfection of C5.18 cells with β-TrCP reduced β-catenin protein levels. However, co-transfection of Smad3 with β-TrCP significantly reduced β-TrCP-mediated β-catenin degradation. The results suggest that inhibition of β-catenin degradation by β-TrCP is a mechanism through which TGF-β/Smad3 stimulate β-catenin levels in chondrocytes.

Proliferative effects of TGF-β/Smad3 are mediated by β-catenin and targeted to the cyclin D1 promoter
To determine the role of Smad3 in chondrocyte proliferation, we examined proliferation, cyclin D1 reporter activity and cyclin D1 protein expression in chondrocytes derived from Smad3−/− mice. Compared with wild type littermates, Smad3−/− chondrocytes had reduced BrdU incorporations and rates of proliferation both in vivo and in vitro. The cyclin D1 promoter contains five putative TCF/LEF binding sites that are potentially responsive to β-catenin. Expression of constitutively active β-catenin (β-cateninS33Y) in C5.18 chondrocytes stimulated cyclin D1 reporter activity and protein expression confirming the importance to these binding sites. In contrast, cyclin D1 reporter activity and protein expression were reduced in Smad3−/− chondrocytes. Since β-catenin is reduced in Smad3−/− chondrocytes, the findings suggest that β-catenin may mediate effects of TGF-β/Smad3 on chondrocyte proliferation.

To directly determine if β-catenin is a downstream mediator of TGF-β/Smad3, the effect of TGF-β on cyclin D1 expression was examined in β-catenin-deficient chondrocytes. Primary mouse sternal chondrocytes were isolated from β-catenin-loxp mice and β-catenin expression eliminated by gene recombination through infection with adenovirus expressing Cre recombinase (Ad-Cre). Deletion of the β-catenin gene reduced basal cyclin D1 protein levels and completely blocked the ability of TGF-β to induce cyclin D1 expression in chondrocytes. The results suggest that β-catenin signaling is a critical regulator of cyclin D1 expression and acts downstream of TGF-β/Smad3.

Discussion:
While mechanisms involved in the suppression of maturation by TGF-β have been extensively investigated, less is known concerning the effect of TGF-β on chondrocyte proliferation. The current findings provide new evidence concerning cross-talk between TGF-β and β-catenin signaling pathways and demonstrate an important physiological role in the regulation of chondrocyte proliferation.

Previous studies have established that β-catenin activation requires signals that prevent constitutive degradation of the β-catenin protein. Although treatment with TGF-β had no effect on gene expression, treatment with TGF-β resulted in rapid induction in β-catenin protein levels and stimulated β-catenin signaling. Our experiments establish that the activated, phosphorylated Smad3 associates with β-catenin and prevents its degradation by β-TrCP. Following TGF-β stimulation, both Smad3 and β-catenin translocate to the nucleus and activate expression of target genes. The cyclin D1 gene contains multiple TCF/LEF binding sites and is an important target of β-catenin. Loss of Smad3 signaling resulted in decreased β-catenin levels, and reduced cyclin D1 expression and cellular proliferation. Finally, the ability of TGF-β to stimulate proliferation was absent in chondrocytes lacking β-catenin expression.

Altogether the results establish important interactions between β-catenin and TGF-β/Smad3 that mediate critical signals controlling chondrocyte proliferation. These findings suggest that TGF-β stimulates chondrocyte cell growth at least in part through activation of β-catenin signaling while it inhibits chondrocyte differentiation.