BIOMECHANICAL ASSESSMENT FOR A FOOTPRINT-RESTORING ARTHROSCOPIC “TRANSOSSEOUS-EQUIVALENT” ROTATOR CUFF REPAIR TECHNIQUE COMPARED TO A DOUBLE-ROW TECHNIQUE

*Park, M C; *Tibone, J E; *ElAttrache, N S; ^Ahmad, C S; **Jun, B J; **Lee, T Q

^Orthopaedic Biomechanics Laboratory, Long Beach VA Healthcare System and University of California, Irvine, CA, *Kerlan-Jobe Orthopaedic Clinic, Los Angeles, CA. tqlee@med.va.gov

INTRODUCTION:
The persistent tear rate after rotator cuff repair remains high. A new arthroscopic “transosseous-equivalent” repair using tendon suture-bridges has been shown to improve pressurized contact over a repaired rotator cuff footprint. In addition to contact area and pressure, fixation strength is an important variable when considering the biology of healing at a repaired rotator cuff footprint. The “transosseous-equivalent” repair employs suture-bridges across medial and distal-lateral fixation points. We hypothesized that the “transosseous-equivalent” repair would demonstrate improved tensile strength and gap formation between tendon and tuberosity when compared to a double-row technique.

METHODS:
In six fresh-frozen human shoulders, a “transosseous-equivalent” rotator cuff repair was performed: a suture limb from each of two medial anchors was bridged over the tendon, and fixed laterally and distally with an interference screw (Figure 1). In six contralateral match-paired specimens a double-row repair was performed (Figure 2). For all repairs, a materials testing machine was used to cyclically load each repair from 10 N to 180 N for 30 cycles, allowing measurements for stiffness, hysteresis, strain, and gap formation (Figure 3). A power analysis was performed for gap formation; in order to detect a minimum 4 mm of gap with our materials testing equipment, with $\alpha = 0.05$, six matched pairs were found to be necessary in order to achieve a power of 97.2%. In addition, each repair underwent tensile testing in order to measure stiffness, energy absorbed, and failure loads at a deformation rate of 1 mm/min. Gap formation between tendon edge and insertion, and tendon strain over the repaired footprint, was measured using a video digitizing system.

RESULTS:
The mean ultimate load to failure was significantly greater for the “transosseous-equivalent” technique (442.99 ± 87.78 N) compared to the double-row technique (299.21 ± 52.52 N) ($p = 0.043$); the energy absorbed to failure was also significantly greater for the “transosseous-equivalent” repair (3210.84 ± 1055.72 Nmm versus 1190.49 ± 291.13 Nmm, $p = 0.0077$), while the stiffness was not different between the two groups ($p > 0.05$). Gap formation during cyclic loading was not significantly different between the “transosseous-equivalent” and double-row techniques: 3.74 ± 1.51 mm, and 3.79 ± 0.68 mm, respectively ($p = 0.95$), stiffness, strain, and hysteresis for all cycles was not statistically different between the two constructs ($p > 0.05$).

DISCUSSION:
The persistent tear rate after rotator cuff repair remains remarkably high, using both open and arthroscopic techniques. Evolving techniques ideally would help optimize healing biology between injured tendon and bone. A previous study has shown that the “transosseous-equivalent” repair helps restore footprint dimensions and improves tendon-to-bone compression when compared to a double-row technique. The “transosseous-equivalent” rotator cuff repair technique improves ultimate failure loads when compared to a double-row technique, while gap formation is similar for both techniques. The current study suggests that improved contact characteristics can be better maintained with a “transosseous-equivalent” technique when compared to a double-row technique, as the former provides a stronger repair. The healing potential at a repaired rotator cuff footprint may be better optimized with the “transosseous-equivalent” technique. An in vivo study using this new technique is required to further elucidate healing capability. Ideally, with increased healing rates via improved surgical techniques, patient shoulder function can be restored more consistently.

AFFILIATED INSTITUTIONS FOR CO-AUTHORS:
^College of Physicians & Surgeons, Columbia University Medical Center.

ACKNOWLEDGEMENTS:
VA Rehab R&D, VA Medical Research, California Orthopaedic Research Institute, and Kerlan-Jobe Orthopaedic Foundation

52nd Annual Meeting of the Orthopaedic Research Society
Paper No: 1966