Effect of Selective Estrogen Receptor Modulator/Raloxifene Analogue on Proliferation and Collagen Metabolism of Tendon Fibroblast

+Irie, T; Takahata, M; Majima, T; Abe, Y; Komatsu, M; Iwasaki, N; Minami, A
+1 Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, JAPAN. 2Department of Joint Replacement and Tissue Engineering, Hokkaido University Graduate School of Medicine Sapporo, JAPAN.
takahatamasahiko@hotmail.co.jp

INTRODUCTION:
Hormonal alterations after menopause lead to profound changes in various connective tissues, including bone, skin, vascular tissues, pelvic organs, and muscles. Alterations of collagen metabolism mediated by estrogens are considered to play an especially/particularly critical role in degradation of tissues containing collagen. Like bone and skin, tendons and ligaments are mainly composed of type I collagen, and tendon fibroblasts were shown to express estrogen receptors. It remains controversial, however, whether estrogen affects collagen metabolism of tendons and ligaments.

It is also unknown whether selective estrogen receptor modulators (SERMs) affect collagen metabolism of tendons and ligaments though it has been shown to have therapeutic effects on many of postmenopausal issues involving connective tissue degradation such as osteoporosis, dermatolysis, and vascular disorders. Since SERMs display an unusual tissue-selective pharmacology, it may have an adverse effect to estrogen on the metabolism of tendons and ligaments.

In the present study, we aimed to elucidate how estrogen and SERM/raloxifene analogue affect the proliferation and extracellular matrix (ECM) metabolism in tendon fibroblasts.

METHODS:
Cell culture: Primary cultures of female Sprague-Dawley rat Achilles tendon cells were used as tendon fibroblasts. Cells were cultured in Dulbecco’s modified Eagle's medium supplemented with dextran-coated charcoal-treated fetal bovine serum (FBS) to minimize the influence of sex hormones contained in untreated FBS. Ascorbic acid (50µg/ml) was added to culture medium for secreted collagen assays. The experimental protocol was approved by the institutional animal study committee.

Cell proliferation assay: Cell proliferation was measured using a BrdU incorporation assay (24 hr) and a WST-8 colorimetric assay (2, 6 days). Cells were cultured at various concentration of 17ß-Estradiol (E2) or raloxifene analogue (LY117018) and either vehicle or estrogen receptor alpha blocker (ICI 182,780, 100 nM).

Reverse transcription and real-time polymerase chain reaction analysis: Cells were cultured at various concentrations of E2 or LY117018 and either vehicle or ICI 182,780 (10⁻7 M) for 8 hr. Total RNAs were extracted from the samples and then 1 µg of RNA was reverse-transcribed and real-time PCR was performed using specific primers against tendon extracellular matrix (ECM) related genes.

Immunocytochemistry: Cells were cultured with or without 10⁻⁸ M E2 or 10⁻⁷ M LY117018 for 48 hr and were fixed with 4% paraformaldehyde and Triton X, and incubated with rabbit anti-rat polyclonal antibodies against type I or type III collagens and tropoelastin. Bound antibodies were detected by the chemiluminescent method. The bands were detected by the chemiluminescent method.

Measurement of total soluble collagen: Total secreted soluble collagen was quantified using the Sircol collagen assay. Cells were cultured with E2 (10⁻⁹ M) or LY117018 (10⁻⁷ M), and either vehicle or ICI 182,780. The total collagen levels were measured at 48 hr or 72 hr.

Western blotting: Cells were cultured with 10⁻⁸ M E2 or 10⁻⁷ M LY117018, and either vehicle or ICI 182,780 (10⁻⁷ M). After incubation for 48 h, the supernatants were collected and electrophoresed and transferred onto a PVDF membrane. The membranes were blocked and then incubated with type I or type III collagens antibodies and MMP-13 antibodies. The bands were detected by the chemiluminescent method.

Statistics: Analysis of variance and Dunn’s post hoc test were performed.

RESULTS:
Effect of E2 and raloxifene on tendon fibroblast proliferation
Neither E2 nor LY117018 significantly affected the proliferation of tendon fibroblasts in both the BrdU assay (24 hr) and the WST-8 colorimetric assay (2, 6 days).

Effect of E2 and raloxifene on mRNA expression of tendon ECM-related genes
Neither E2 nor LY117018 changed mRNA expression level of type I collagen significantly, but both of them significantly upregulated the mRNA expression level of type III collagen and elastin, and the estrogen antagonist ICI 182,780 attenuated these changes. Both E2 and LY117018 upregulated the mRNA expression level of MMP-13 in a dose-dependent manner and these changes were also attenuated by ICI 182,780. E2 did not significantly increase the mRNA expression of TIMP-1, but LY117018 at a concentration of 10⁻⁷ M significantly upregulated the mRNA expression of TIMP-1, and ICI 182,780 treatment attenuated this upregulation.

DISCUSSION:
The results of the present study suggest that both estrogen and SERM/raloxifene analogue affect collagen metabolism in tendon fibroblasts. Although neither E2 nor LY117018 significantly changed the expression of type I collagen, which is a main component of the tendon ECM, both E2 and LY117018 increased the expression of MMP-13, which is implicated in collagen degradation of the rat tendon ECM. Because structural and material properties of the tendons and ligaments are maintained by the balance between collagen synthesis and degradation, these results indicate that estrogen deficiency retards collagen turnover and that treatment with either E2 or SERM recovers MMP-13 expression to the premenopausal level.

An interesting finding was that both E2 and LY117018 increased the expression of type III collagen and elastin, which account for less than 10% of the tendon ECM but are considered to govern tendon elastic properties. Although increased type III collagen content is reported to weaken the tensile strength of tendons, the expression level of type III collagen and elastin induced by E2 and LY117018 may be normal level and these may contribute to physiological level of elasticity in tendons and ligaments.

These findings indicate that estrogen deficiency might retard tendon ECM remodeling and alter tendon elasticity. Treatment with raloxifene may help to recover these changes to premenopausal levels, but further in vivo studies are required.

Acknowledgement: The authors thank Eli Lilly and Company for supplying the raloxifene analogue LY117018.

Poster No. 1117 • 56th Annual Meeting of the Orthopaedic Research Society