Surface Cross-linked Ultra High Molecular Weight Polyethylene by Diffusion of Dicumyl Peroxide

Sanem Kayandan, Brinda Doshi, Ebru Oral, Orhun Muratoglu.
Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA, USA.

Disclosures: S. Kayandan: None. B. Doshi: None. E. Oral: None. O. Muratoglu: None.

Introduction: Highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the material of choice for total joint arthroplasty due to its highly improved wear resistance. Cross-linking leads to decreased wear but also decreases the toughness of the material [1]. Thus, surface cross-linking is a method that improves the wear resistance on the surface while maintaining the toughness in the bulk of the material [2].

Cross-linking in polyethylene can be achieved during consolidation by using peroxides. We have also shown that an organic peroxide with a low decomposition temperature could be diffused into virgin and antioxidant-blended UHMWPEs, resulting in cross-linking on the surface [3].

In this study, we hypothesized that a low wear rate, high impact strength, surface cross-linked, antioxidant-blended UHMWPE could be obtained by using diffusion of an aqueous emulsion of dicumyl peroxide (DCP). In this manner, a feasible manufacturing method for tougher joint implants could be achieved using peroxides.

Methods: Sample Preparation: Medical grade GUR1020 UHMWPE was blended with vitamin E at 0.1, 0.3 and 0.8 wt%, and then consolidated. These pucks were then machined into 1cm cubes for diffusion. 30mg of DCP/ml was added with 40% Tween 20 into DI water to form a stable emulsion. In emulsions also containing vitamin E, 15mg of vitamin E/ml was added to this emulsion. To determine optimum diffusion durations, the cubes were doped using emulsion at 100°C for different times and decomposed in argon at 150°C for 4 hours to initiate cross-linking. For assessing the properties of a medical preform-size sample (large scale), a 0.3 wt% vitamin E blended UHMWPE (~ 80x60x10 mm) was doped at 100°C using a DCP emulsion containing vitamin E for 16 hours followed by decomposition at 150°C for 4 hours.

To compare its properties to clinically relevant controls, an ‘E1™’ tibial bearing (Biomet, Inc.) was machined for further testing. Another control ‘CISM-100’ was prepared by irradiating UHMWPE (GUR1020) at 100 kGy followed by subsequent melting.

Sample testing: Cross-link density was measured by swelling 3 mm cubes in xylene pre-heated to 130°C for 2 hours. The gravimetric swell ratio was converted to a volumetric swell ratio using the density of polyethylene as 0.94 g/cc and the density of xylene at 130°C as 0.75 g/cc. The crosslink density was calculated as previously described [2]. Pin-on-disc (POD) wear testing was performed on cylindrical pins (dia. 9 mm, height 13 mm) as previously described [4] at 2 Hz for 1.2 million-cycles (MC). Wear was determined gravimetrically every ~0.16 MC and the wear rate was determined by the weight change from 0.5 to 1.2 MC. The Izod impact strength was determined by double notching and testing of the samples (6.35 x 12.7 x 63.5 mm, n=5) according to ASTM F-648. It is reported as (kJ/m²). The oxidation induction time (OIT) was determined using a differential scanning calorimeter. The samples (~5mg) were heated from 20 to 200°C at a rate of 20°C/min under nitrogen. After 5 minutes at 200°C the gas was switched to oxygen and the onset of oxidation was recorded as the OIT and determined as the intercept

...
of the extended baseline and the steepest tangent drawn to the exotherm. Statistical significance was calculated using student’s t-test and the significance was attributed to p<0.05.

Results: DCP emulsion without vitamin E: The surface cross-link density of 0.1wt% vitamin E blended UHMWPE was similar at diffusion times of 4 and 8 hours after being decomposed at 150°C for 4 hours. For 0.3 and 0.8wt% vitamin E blended UHMWPE, the surface cross-link density was highest for 8 and 16 hours diffusion time, respectively, when decomposed at 150°C for 4 hours (Figure 1). The OIT calculated on the surface of the 0.1, 0.3 and 0.8 wt% diffused, vitamin E blended UHMWPEs was 4.1, 6.6 and 10.1 minutes, respectively.

DCP emulsion containing vitamin E: The surface cross-link density of the 0.1 and 0.3wt% vitamin E blended UHMWPEs after diffusion in emulsified DCP containing vitamin E was comparable to the samples diffused with DCP without vitamin E (p= 0.89 and 0.96 for 0.1 and 0.3wt% vitamin E respectively). The diffusion and decomposition temperatures and times were the same for both types of emulsions (Figure 2). The OIT on the surface of the 0.1 and 0.3wt% vitamin E blended UHMWPEs after diffusion in vitamin E-containing DCP emulsion was 13.6 and 19.5 minutes respectively, which was significantly higher than the samples diffused with the DCP emulsion without vitamin E (p<0.05).

Large scale processing: The surface cross-link density and wear rate of the large scale 0.3wt% vitamin E blended UHMWPE diffused in vitamin E-containing DCP emulsion were comparable to control E1 and CISM-100 while its impact strength was significantly higher (p<0.05, Table 1).

Discussion: Our goal was to develop a surface cross-linked, highly wear and oxidation resistant vitamin E blended UHMWPE with improved toughness. We aimed at obtaining the cross-link density of 100-kGy irradiated and melted virgin UHMWPE (245-260 mol/m3) on the surface of this material. Our approach was to diffuse the organic peroxide DCP in an emulsified form and cross-link the material during a subsequent decomposition step above the decomposition temperature of this peroxide (137°C), where free radicals are generated abundantly.

Our objective in using vitamin E blends of UHMWPE was to ensure oxidation resistance especially on the surface of the material. Since vitamin E can restrict cross-linking in UHMWPE with increasing concentration [5], we studied diffusion durations of DCP for each vitamin E concentration to achieve the highest possible surface cross-link density. We determined that the optimal diffusion durations for 0.1 and 0.3 wt% blends were 4 and 8 hours, respectively, which may be feasible in a manufacturing setting. The OIT of UHMWPEs surface cross-linked by diffusing just emulsified peroxide was lower than 10 minutes, corresponding to low oxidation resistance as defined by ISO11357-6:2002. This was presumably due to vitamin E extraction from the surface during the diffusion of the peroxide. We showed that incorporating additional vitamin E into the DCP emulsion improved the oxidation resistance substantially without compromising the wear resistance (Figure 2).

A large scale sample of 0.3wt% vitamin E blended UHMWPE was surface cross-linked using optimized parameters. The wear rate of this surface cross-linked UHMWPE was comparable to two clinically relevant, highly cross-linked UHMWPEs (Table 1). There was a substantial improvement (75 and 44% respectively) in the impact strength due to the restriction of cross-linking to the surface.

Significance: Surface cross-linking of vitamin E-blended UHMWPE by diffusion of emulsified DCP containing vitamin E achieved high wear and oxidation resistance with superior impact strength compared to clinically available highly cross-linked joint implant materials.
Figure 1: Crosslink density for DCP-doped (emulsion: 30mg DCP/mL) (a) 0.1wt%, (b) 0.3wt% and (c) 0.8wt% Vitamin E blended GUR 1020 decomposed at 150°C for 4 hours.

Figure 2: Crosslink density for DCP-doped (emulsion: 30mg DCP/mL, 15mg Vit E/mL) (a) 0.1 wt% and (b) 0.3wt% Vitamin E blended GUR 1020. The diffusion of DCP was performed at 100°C for 4 and 8 hours respectively. Decomposition was performed at 150°C for 4 hours.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface Crosslink density (mol/m²)</th>
<th>Impact Strength (kJ/m²)</th>
<th>Wear (mg/MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sample</td>
<td>287 ± 15</td>
<td>113.6 ± 2.0</td>
<td>0.86 ± 0.06</td>
</tr>
<tr>
<td>E1™</td>
<td>220 ± 6</td>
<td>65.0 ± 0.6</td>
<td>0.64 ± 0.08</td>
</tr>
<tr>
<td>CISM-100</td>
<td>229 ± 16</td>
<td>78.7 ± 3.6</td>
<td>0.93 ± 0.23</td>
</tr>
</tbody>
</table>

ORS 2015 Annual Meeting
Poster No: 0892