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INTRODUCTION: In vivo quantification of intervertebral disc (IVD) composition and 
mechanics may help to elucidate pathomechanisms related to the development of 
discogenic low back pain (LBP) and IVD degeneration. However, characterizing IVD 
function in vivo has remained challenging.  
To address this, we sought to develop a method which could accurately derive multi-
axial (3D) estimations of internal IVD mechanics in response to activities of daily living. 
To do so, we developed a deep-learning-based deformable image registration method 
which leverages the inherent properties of diffeomorphisms (a spatial transformation 
which is smooth, one-to-one, and invertible) during training (via loss function 
penalization) to derive deformation maps (ϕ) between pre- and post-exercise IVD image 
volumes. Hence, in the present study, we evaluated the accuracy, validity, and 
applicability of this technique to the study of 3D IVD deformations induced in response 
to activities of daily living (i.e., treadmill walking). 
METHODS: Imaging: T2-weighted (n = 32; SPACE) MRIs were obtained using 
previously disseminated sequence parameters1. Additionally, segmentations of the L1-
L2–L5-S1 IVDs from MRI volumes were performed for the pre- and post-exercise scans 
as previously described1-3. Study Design: To induce IVD deformations, subjects walked 
on a treadmill for 30 minutes at a constant speed1, 2. Model Design: The unsupervised 
deformable image registration network was derived from the VoxelMorph architecture4. 
The model takes two inputs (moving (m); fixed (f)) and estimates a voxel-wise 
deformation field (ϕ) mapping m to f, yielding [m∘	 ϕ]. The model utilizes a two-
component loss function (Ltotal=Lsim+λLsmooth) to optimize the learned deformation 
field, ϕ. Lsim quantifies the local cross-correlation (similarity) between f and [m∘	ϕ], while 
Lsmooth penalizes the total magnitude of the spatial gradient of ϕ. Model training: Model 
training was conducted using a k-fold (k=32), leave-one-subject-out, protocol (5 IVD 
levels per subject; 10 IVDs per subject total). Models were trained for 2000 epochs (200 
steps/epoch). During each step a m and f volume are sampled randomly (without 
replacement); m was randomly deformed prior to registration using a grid distortion 
technique; model validation was performed at the end of each epoch. Strain 
Calculations: For each pre-post-exercise IVD pair (Figure 1) deformation estimations 
(ϕ) obtained from model testing were smoothed using a gaussian kernel (σ=3); 
deformation gradients (∇ϕ=F) were calculated using 2nd order central finite difference 
approximations. Green-Lagrange strains (E) were calculated, whereby E=1/2(FT·F-I). 
Principal strains (e.g., Emin) were then calculated by finding the eigen-decomposition 
of E. Volumetric strain was estimated by calculating the Jacobian determinant matrices 
using J= det(∇ϕ), where J = 1 signifies no change in volume,  while  J=0.90 indicates 
a 10% decrease in volume. Accuracy: The accuracy of this technique was estimated 
using a zero-strain protocol Prior to exercise, two sets of anatomic SPACE image 
volumes were acquired in series (n=3 subjects). Then, for each unloaded pair of 
volumes (n=15) the mean (absolute) and median $!" and %!" associated with each ϕ 
was estimated across all voxels in the image volumes.  External Validity: To assess 
external validity we directly compared mean minimum principal strain (Emin; whole 
IVD) to manual mean strain estimations (previously reported1). Application: We 
assessed local changes in IVD volume by quantifying pairwise differences in J between 
radially subdivided IVD regions (Figure 3), using mixed-effects modeling.  
RESULTS:  Results from our zero-strain study suggest that random errors were small 
and centered around zero: mean |$!"|=1.00 ± 0.01;  median $!" =1.00; |%!"|=0.39 ± 
0.68%; median %!"=0.03%. Comparison of Emin to manual compressive strain yielded 
ICC(2,k)=0.62 (moderate reliability). Regional differences in mean J  (Figure 3)  were 
significant (multiple p < 0.05). 
DISCUSSION:  The present study demonstrated that a diffeomorphic-deep-learning-
based registration paradigm can be used to accurately estimate 3D (i.e., multi-axial) 
IVD biomechanics in vivo. To this end, we demonstrated that Emin agreed with previously validated measures of manual compressive strain 1, 2. Simultaneously we 
observed that volumetric strains (J) were regionally distinct from one another, increasing from the NP to the O-AF (Figure 2). Closer inspection of this relationship 
in Figure 2 (see also: J in Figure 1), suggests that volumetric fluctuations in the AF are non-homogeneous, having regional concentrations of both expansion and 
contraction. Notably, this finding echoes our understanding of how fluid convection to surrounding tissues might occur in response to dynamic loading of the IVD5 
(i.e., fluid moving from the aqueous NP to the O-AF as a result of increased hydrostatic pressure due to compressive loading of the IVD). Hence, it may be inferred 
that deformations estimated using this novel modeling paradigm may reflect both structural and fluid-related tissue deformations induced in response to loading. 
However, while further testing is needed to determine to what extent these deformations are related to tissue/fluid deformations, these results nevertheless highlight 
the utility of this novel method for investigating multi-axial (3D) IVD biomechanics, in vivo. 
SIGNIFICANCE: This novel framework enables the accurate estimation of 3D internal IVD deformations in response to activities of daily living, thereby 
enhancing our ability to characterize the native function of IVDs. 
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Figure 1: 
Outcome metrics 
obtained during model 
testing.  
J and Emin  are derived  
from ϕ (a 3D voxel-wise 
map of predicted 
deformations in 
response to walking 
between pre- (m) and 
post- (f) exercise IVD 
pairs). The data shown 
here depicts a single 
sample (see Figure 2 for 
mean response). 
Colormaps: ϕ [0.00 – 
6.00]; J [0.90 – 1.10]; 
Emin [-0.05 - 0.05]. J and 
Emin quantify volumetric 
and minimum principal 
strain, respectively. 

Figure 2: Mean Volumetric Strains. Mean J 
across all pairs of IVDs. Here, 1.00> J >1.00 
indicates regions of volumetric contraction 
and expansion, respectively. 
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Figure 3: Regional J. Mean 
regional Jacobians increased 
with increasing distance from 
the centroid of the IVD. 
*p<0.05. 
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