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INTRODUCTION: Long-term use of bisphosphonates (BP) results in the accumulation of microcracks (μCrks) in bone. [1] Such μCRks are implicated in the 

pathogenesis of atypical femoral fractures, though the precise nature of this interaction is not well understood. [2] There is a fundamental question as to what 

happens to the small amount of µCrks and the associated impairments of local material properties in remodeling-suppressed living bone, especially with normal 

low-level mechanical loading, especially if those cracks cannot be remodeled as in BP treatment.  In the current studies, we tested whether small amounts of 

“pre-existing” fatigue microdamage will increase and local material properties will degrade during BP treatment with normal, in vivo loading (i.e., cage 

ambulation). 

METHODS: Bone microdamage induction and treatment- Ulnae of young-adult (4 m.o.) female Sprague Dawley rats (n=24) were cyclically loaded in end-

load bending in vivo to induce controlled amounts of fatigue (FAT) microcracks (μCrks) in the mid-diaphyseal cortex, as previously described. [3] Control 

ulnae were not subjected to fatigue loading (NoFAT). Baseline animals were sacrificed immediately following damage induction; Survival animals were treated 

for 4 months following damage induction with either alendronate (ALN) or PBS, after which point they were sacrificed. Accordingly, experimental groups are 

Baseline-NoFAT, Baseline-FAT, ALN-NoFAT, ALN-FAT, PBS-NoFAT, PBS-FAT. Microcrack content- Ulnae were stained en bloc with basic fuchsin to identify 

μCrks. After PMMA embedding, 200 μm-thick cross sections were prepared from the damage region of FAT ulnar diaphyses, or the equivalent location in 

NoFAT ulnae, and cover-slipped for microscopy; microcrack density (Cr.Dn, #/mm2) was measured using OsteoMeasure and fluorescence microscopy.  

Mechanical properties: Additional ulnar diaphyseal cross sections were prepared for nanoindentation to measure local elastic modulus (E, GPa). Indentation 

testing was performed using a Hysitron TI-950 TriboIndenter. Tests were conducted using a 5,000 μN maximum load, 10 sec loading/unloading time and 20 

sec hold-time, with indents placed 10 μm apart.  Modulus was measured for: 1) Overall bone (i.e., all bone) in the microdamage containing cortical region in 

these ulnae, and 2) in bone immediately surrounding (±30 μm) μCrks (i.e., around dx) in Baseline-FAT and ALN-FAT bones. Note, PBS-FAT samples had 

already undergone osteonal remodeling of the microdamage by 4 months, removing most of the μCrks (Fig 2). In these bones, local measurements were made 

on osteons (i.e., remodeled area) instead. Statistics- Differences in Cr.Dn and moduli were assessed using a one-way ANOVA with multiple comparison post-

hoc testing (GraphPad Prism) and data are reported as mean ± SD. 

RESULTS: Mechanical Properties: Loss of modulus in baseline fatigue ulnae (Baseline-FAT) was highly localized, with E around µCrks reduced ~20% vs. 

NoFAT bone; there was no reduction is overall tissue modulus beyond the bone around µCrks. In contrast, ALN-treatment in fatigued bone caused a marked 

decrease in overall modulus (~25% vs ALN-NoFAT), with an even greater decline of local modulus loss in the bone surrounding microdamage. Overall E of 

PBS-FAT bone was similar to control, but E of osteons was ~20% lower than control bone. Tissue modulus data are summarized in Fig 1.  Microcrack content:  

Cr.Dn was increased ~60%  in ALN-treated fatigued bone vs Baseline-FAT bone. In contrast, in PBS-FAT bone, where remodeling occurred, µCrk content was 

reduced by almost 75% vs Baseline-FAT bone. Cr.Dn data are summarized in Fig. 2.  

DISCUSSION: The current studies show that suppression of bone remodeling in previously fatigued bone has a marked negative impact, with ALN use 

resulting in both increased number of microcracks and expanded degradation of local mechanical properties in bone.  The mechanisms by which ALN treatment 

of bone with pre-existing microdamage further degrades material properties are not yet fully understood. However, it is well established that fatigue microcracks 

cause locally impaired bone stiffness. [3-5] Accordingly, continued loading of bone foci with unremodeled microcracks will be expected to result in locally 

elevated stresses, which, in turn, can mechanically drive formation of additional microcracks. Other potential contributors to matrix degradation and microcrack 

accumulation include osteocyte effects such as localized osteocyte death known to occur around microcracks and also the metabolic stress in surviving 

osteocytes near microcracks- both of which can potentially make bone more susceptible to matrix damage. [3, 6-9] 

SIGNIFICANCE: The present study shows that if cortical bone remodeling cannot occur due to bisphosphonate treatment, small amounts of experimentally-

placed bone microdamage in vivo can readily increase and markedly impair local material properties, even with normal low-level mechanical loads. 
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