A Novel Mesh-free Model For Accurately Simulating Material Damage During Orthopaedic Screw Pull-out Per The Astm F543-17 A3 Standard Sloan Kulper^{1,2}, Janice Oentaryo* ^{1,2}, Rezaul Tharim¹, Erica A. Ueda^{1,2} - 1. Lifespans, Ltd., Wong Chuk Hang, Hong Kong SAR, China - 2. The University of Hong Kong, Department of Orthopaedics & Traumatology, Pok Fu Lam, Hong Kong SAR, China - * Corresponding Author: janice@lifespans.net Room 2156, 21/F Remex Centre, 42 Wong Chuk Hang Road, Wong Chuk Hang, Hong Kong . Introduction: Mesh-free computational models of ASTM F543-17 A3 (screw pull-out) were generated using a novel simulation software system and its predictions were compared to physical experimental test results. Methods: Generic HA 3.5, HA 4.0, and HA 4.5 bone screws were fabricated (316L stainless steel, ISO Fine tolerance, n=3 each), inserted into pilot holes in the PU foam, and then pulled out while recording force vs. displacement data. Blocks of solid rigid polyurethane foam measuring $58 \times 65 \times 40$ mm were prepared from 20 PCF foam (n=3 for each screw design), and 15 PCF foam (n=3 for HA 4.5 screw only). Models of the implant and foam blocks were constructed in the novel mesh-free computational modeling system at a resolution of 200 μ m/particle and simulated pull-out tests were performed. Results: The maximum peak pull-out loads of the HA 3.5 screws from 20 PCF foam were 692 N (average) and 706 N in the physical and simulated tests, respectively. For the HA 4.0 screws the maximum pull-out loads were 816 N (average) and 713 N from 20 PCF foam in the physical and simulated tests, respectively. For the HA 4.5 screws the maximum peak pull-out loads were 509 N (average) and 508 N from 15 PCF foam in the physical and simulated tests, respectively; maximum pull-out loads were 798 N (average) and 820 N from 20 PCF foam in the physical and simulated tests, respectively. The average CCC (concordance correlation coefficient) between simulation and experiment maximum pull-out loads was >0.90, suggesting excellent concordance, however the simulations over-predicted loads following the peak. Computational time on a 32-core cloud-computing instance was less than 12 hours for each simulated test. Discussion: The novel mesh-free computational modeling system in the present study can accurately predict the maximum pull-out loads of several typical orthopedic screws in two common PU foam grades per ASTM F543-17 A3, suggesting that this system can be used to quickly predict the likelihood that a candidate design will pass without the need of a physical prototype or testing laboratory. Significance/Clinical Relevance: This novel particle-based ASTM F543-17 A3 model can be used to quickly predict the likelihood that a candidate design will pass, supplementing or replacing the need for a physical prototype to fabricated and tested under laboratory conditions. Cover image Table 1. Deviations between physical and simulated testing protocols and the published ASTM standard | Test Setup | | ASTM F543-17 A3 | Physical test | Simulation | |-----------------------|--|---|---|--| | Parameters/Procedures | | standard method | | | | Test setup procedures | Load fixture | Slot to capture the
head of the screw
without contact
being made with the
screw's shaft | Slot to capture the
head of the screw
without contact
being made with
the screw's shaft | No simulated load fixture; screw head is removed since only the screw's shaft interacts with the foam | | | Test block clamp's grip span | Minimum of five
times the major
diameter of the bone
screw | Minimum of 16 mm | Minimum of 16 mm | | | Test block (polyurethane
foam in accordance with
ASTM F1839) | Discretion of the user | 15 or 20 PCF | Scaled according to
manufacturer's 15 or
20 PCF compression
data | | | Foam block size (width x length x height) | Height should be
more than 20 mm | 58 x 65 x 40 mm | 58 x 65 x 40 mm | | | Screw insertion | 3 rpm into a foam
block pre-drilled
with a pilot hole
using a drill size
specified by the
screw manufacturer
(and tapped if
specified) | Manually and slowly inserted the screw into a predrilled foam block with pilot hole 0.1 mm smaller than the screw's core diameter | No simulated insertion; Boolean difference operation was performed to create a cavity with the same profile as the screw. The screw model was then positioned in the cavity. | | | Screw insertion depth | 20 mm | 20 mm | 20 mm | | | Sample size | Usually, n=5
minimum per case | n=3 per case | n=1 per case | | Parameters | Tensile load rate | 5 mm/min | 5 mm/min | 1 m/s (Table 2) | | | Data collection time interval | Suitable to
continuously record
load versus load
fixture displacement | 0.05 s | 1 x 10 ⁻⁹ s | | | End point (displacement) | The maximum load is reached during the test method | 6 mm | 6 mm | | | Resolution (specific to simulation) | Not applicable | Not applicable | 200 μm | Figure 1A. Load-displacement curves from the physical experiment (n=3) and the simulated (half-sized / symmetric across YZ-plane) axial pull-out tests of HA 3.5 (top) and HA 4.0 screws (bottom) in 20 PCF polyurethane foam blocks up to 1 mm pull-out displacement Figure 1B. Load-displacement curves from the physical experiment (n = 3) and simulated axial pull-out tests of HA 4.5 screws in 15 PCF (top) and 20 PCF (bottom) polyurethane foam blocks up to 1 mm pull-out displacement.