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INTRODUCTION: Musculoskeletal disorders cause severe reduction in biomechanical function and are the leading contributor of global disability [1]. The 
existing options for assessing patient biomechanics are: 1) static goniometry for joint range of motion, 2) functional testing that measures the total duration 
of time to complete a maneuver, and 3) 3D biomechanical testing that is both time intensive and generates large and complex datasets for each body 
segment. Options 1 and 2 lack quantitative robusticity of movement biomechanics. Further, option 3 is not practical in a clinical setting, and the overall 
clinical utility of the resulting variables is unclear. It is critical to develop a quantitative approach for evaluating movement quality across multiple joints to 
capture compensatory patterns of patients with musculoskeletal impairments. Principal Component Analysis (PCA) is a popular strategy for dimensionality 
reduction to quantify full-body movement control [2-6] in which the three-dimensional joint positions are analyzed at a single time point to identify patterns 
across the entire group of patients. This technique was applied to previous work in our lab, which developed a novel composite metric, Kinematic Deviation 
Index (KDI), for quantifying movement control [2]. While the technique has promising clinical utility, using PCA as described overlooks the temporal data, 
a crucial aspect of motion analysis. Further, the use of PCA and other machine learning techniques require large patient sample sizes to improve data 
robustness. Therefore, the objective of this study was to formulate a data science approach that distills full-body postural and dynamic patterns into a single 
metric that has robustness and clinical utility, defined by changes in multi-joint kinematics over time and independence of sample size. This would provide a 
full-body movement quality composite score that could be used as a biomechanical outcome for assessing movement impairment and monitoring recovery.  
 

METHODS: With IRB approval and informed consent, participants were recruited, including healthy adults who served as the control (n=6), preoperative 
total hip arthroplasty patients (THA, n=10), and patients with chronic low back pain for > 3 months and > 50% of days (LBP, n=10). Participants performed 
the sit-to-stand motion for five continuous repetitions. Eleven landmarks were used as inputs (base of spine, mid-spine, neck, shoulders, hips, knees, and 
ankles), and a non-invasive three-dimensional markerless depth camera (Azure Kinect, Microsoft) was used to systematically record positional data (Figure 
1A).  For all landmark data, repetitions were averaged to increase the signal-to-noise ratio. The data was temporally normalized to ensure uniform data 
points across all patients. PCA was separately performed for each patient’s data, encompassing all averaged landmark positions in 3D for every normalized 
time point. Applying PCA independently for each patient addressed the challenge of detecting variation in temporal data and diminished the influence of 
patient sample size. To align the data across patients, Generalized Procrustes Analysis was applied to the PCA-transformed data using the transformation 
calculated at the resting position (t=0). The control group's average was chosen as the reference frame to ensure that the scores remained consistent 
regardless of the inclusion of patient-specific data. The Kinematic Profile (K-Profile), which captures the most prominent patterns across all landmarks, was 
calculated using the weighted sum of the PCA scores at every time point. A single metric for each activity, the Kinematic Composite Score (K-Score), was 
established by calculating the total difference between the individual's score and the control average. To incorporate patient speed, the K-Score was adjusted 
by multiplying the ratio of the average time to complete an individual activity to the control average time. Further, all values were transformed using a 100-
point scale, with 100 representing an ideal movement trajectory, to enhance comprehensibility amongst patients and clinicians. The K-Score allows insight 
into the extent of alignment to the “ideal trajectory” and “ideal pace”, which are defined by healthy subjects with no movement impairment.  Kruskal-Wallis 
test was conducted on the K-Scores to account for the small sample sizes and nonparametric nature of the THA data (confirmed with the Shapiro-Wilk 
Normality Test). Dunn's post hoc analysis was performed to make pairwise comparisons when significance was found (p ≤	0.05). 
 

RESULTS: The absolute value of the mean K-Profile was highest for the control group, indicating stronger alignment of joint positions with the principal 
components (Figure 1B). Specifically, controls exhibited well-defined postural patterns, while the patient groups were less defined. Notably, the variance in 
the control group was less than the patient groups, indicating more consistent movement patterns among controls. The comprehensive activity metric, K-
Score, demonstrated statistically significant differences (p<0.001, H =13.9) between controls (Median:94.5, IQR:2.8), THA (Median: 81.5, IQR: 27.0), and 
LBP (Median:54.7, IQR: 34.6) (Figure 1C). The THA and LBP groups exhibited a 13.8% (p=0.04), and 42.1% (p<0.001) decrease in median K-Scores 
compared to the controls, respectively, and there were no statistical differences between the two patient groups (p=0.12).  
 

DISCUSSION: This study developed a methodology to assess movement quality for musculoskeletal conditions by distilling full-body postural patterns into 
a composite score that addresses limitations in commonly used approaches, including limited temporal analysis, neglection of speed, and reliance on patient 
sample size. The results suggested that the control group displayed defined and consistent movement patterns for sit-to-stand, as indicated by the K-Profile 
magnitudes and lower overall standard deviation. Further, the K-Score, an intuitive and user-friendly metric, effectively distinguished between controls, 
THA, and LBP patients. The study is currently limited by the sample sizes and the specific sit-to-stand activity, restricting the statistical power and 
confirmation of broader utility, respectively. With the promising preliminary results, future research aims to increase sample size, diverse musculoskeletal 
conditions, and activities.  
 

SIGNIFICANCE/CLINICAL RELEVANCE: The developed metrics are a promising avenue for assessing and differentiating heterogeneous 
musculoskeletal conditions based on objective postural and temporal patterns. The K-Score can ultimately be employed to aid in diagnosis and quantify 
rehabilitation progress.  
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Figure 1: (A) Schematic of multi-joint markerless motion capture, (B) K-Profile over the normalized time as mean (solid line) and standard deviation 

(shaded region), and (C) K-Score as a box-and-whisker plot indicating median, IQ1, and IQ3. * Represents p ≤0.05 
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