Identification of skeleton-innervating peripheral sensory neurons and their role in fracture repair
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INTRODUCTION: Bone is highly innervated by sensory nerves, predominantly on the periosteum. Prior work from our group has shown that proper fracture
healing requires intact tropomyosin receptor kinase A (TrkA) signaling, which is mainly expressed on sensory nerves'. The specific neuroregulatory molecules
important in nerve-bone crosstalk are poorly understood, which is hampered by our lack of understanding of skeletal-innervating neurons, their identity and
transcriptional heterogeneity. Here, we utilize a combination of peripheral nerve retrograde tracing and single cell RNA sequencing (scRNA-Seq) to better
define the identity of skeletal-innervating neurons as well as their response to bone fracture.

METHODS: To identify skeleton-innervating neurons, an engineered virus with enhanced tropism for peripheral neurons was injected into the midshaft of the
ulnar periosteum of 14-week-old mice (3.5ul AAV-PHP.S-tdTomato). 4 weeks after injection, retrograde labeling of dorsal root ganglion (DRG) neurons with
AAV-PHP.S-tdTomato was evaluated using whole-mount immunohistochemistry, sScRNA-Seq and RNAscope (DRGs at C7, C8, T1 levels were used
corresponding to the innervation pattern of the forelimb). To characterize temporal transcriptomic responses to ulnar stress fracture', retrogradely labeled
whole DRGs were harvested and dissociated at 1-, 14- and 56- days post-stress fracture and subjected to scRNA-Seq (Figl.A). To uncover ulna callus resident
cells that may interact with ulna-innervating sensory neurons, scRNA-Seq of the fracture callus was generated 14 days post-injury. Interaction modalities were
performed to reveal potential skeleton-innervating neuron-derived ligands that are involved in fracture repair. All animals were housed and procedures were
performed with the approval of the IACUC of Johns Hopkins University.

RESULTS SECTION: Whole mount imaging showed successful retrograde labeling of AAV.PHP.S-tdTomato of DRG (Figl.B). scRNA-Seq profiling of
DRGs recovered 6,648 neurons from all time points, consisting of 14 neuronal cell types (Fig.1C). Of which, 5.8% were labeled by AAV-PHP.S-
tdTomato(tdTP*). tdTP* neurons were mostly enriched in CGRP-expressing subclusters and low-threshold mechanosensory (LTMR) neurons, with the top 5
clusters being CGRP-Gamma/Beta (17.2%), CGRP-Eta (17.1%), CGRP-Zeta (14.2%), Proprioceptors (10.9%) and AP Field-LTMRs (9.2%) (Fig.1D),
validated by RNAscope (Figl.E). GO enrichment analysis showed tdT** neurons were involved in endochondral ossification, bone mineralization and
angiogenesis when compared to tdT"*® neurons (Fig.1F-G). We also compared transcriptomic changes over time to reveal temporal neuronal responses to
fracture injury. GO enrichment showed that DRG neurons were mostly involved in sensory perception of pain, signal transduction and immune response at
d1, and skeletal development, cell proliferation and angiogenesis at d14 (Figl.H). Of note, tdT"* neurons responded more drastically than tdT"*¢ neurons, with
2% of genes significantly dysregulated among labeled neurons, whereas <0.1% of genes changed among non-labeled neurons. To understand if DRG neurons
responded differently to peripheral axon injury and bone injury, we compared our data with an available dataset that investigated transcriptomic changes in
DRG neurons after nerve injury (SNI). Differential expressed genes (DEGs) showed little overlap between SNI and fracture injury (Fig.11I). Classic neuronal
injury markers like Atf3, Sox1 and Jun were significantly increased after SNI, however, remained the same after fracture (Fig.1J), suggesting a distinct
response of sensory neurons to these two types of injury. Interactome modalities were performed to discern potential signaling pathways that may be involved
in fracture repair. Several candidates were predicted, for example, FGF and HH signaling pathways (Fig.1K).

DISCUSSION: By integrating retrograde labeling and dorsal root ganglia scRNA-seq, we mapped peripheral sensory neurons that innervate long bones.
Skeleton-innervating neurons were mostly CGRP subclusters and LTMR neurons, corresponding to their function of sensory perception of pain and mechanical
force. Also, they were markedly molecularly distinct from non-skeleton-innervating neurons. Dynamic temporal transcriptomic changes were observed in
sensory neurons during the fracture repair process, with gene ontology suggesting pain sensation and immune responses during acute phase and functions such
as regulation of cell proliferation, ossification and angiogenesis during later phases. Interactome analysis between DRG neurons and callus resident cells
suggested that skeleton-innervating neurons may be involved in fracture repair by secreting specific neuroregulatory ligands.

SIGNIFICANCE/CLINICAL RELEVANCE: This study identified skeleton-innervating neurons and characterized how they responded to bone fracture injury.
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