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Introduction: The capacity to effectively probe the mechanical function of cartilage is important due to the suggested link between osteoarthritis (OA) 
development and altered cartilage mechanics. Techniques that assess the mechanical function of cartilage in vivo, such as measuring cartilage strain in response 

to loading, commonly require participant-specific magnetic resonance imaging (MRI)-based 3D models of bone and cartilage [1,2]. However, creating these 

models typically involves manual segmentation, which is a labor-intensive process that ultimately hinders research throughput. Encouragingly, deep learning 
has recently shown the potential to automate some medical imaging segmentation tasks [3]. Thus, the objectives of this work were to train a suite of deep 

learning models to auto-segment the bone and cartilage from knee MRI scans, validate these models for measuring tibiofemoral cartilage thickness, and apply 

them to measure cartilage strains induced by running. Our hypotheses were that the deep learning models would produce repeatable measures of cartilage 

thickness and that running would induce both tibial and femoral cartilage compressive strain.  

Methods: Four separate supervised deep learning models were 

trained, validated, and externally tested for automated 
segmentation of the tibia, femur, tibial cartilage, and femoral 

cartilage. Data – All data utilized to train and test our deep learning 

models were obtained from six previously published institutional 
review board-approved studies [4-9]. In total, model development 

utilized data from 21 participants (sex: 13M/8F; injury status: 

healthy; age: 22-48 years; BMI: 20.0-27.9 kg/m2) for the bone 
models and 72 participants (sex: 51M/21F; injury status: healthy, 

ACL deficient, ACL reconstructed, or ACL and meniscus 

deficient; age: 22-48 years; BMI: 18.5-34.7 kg/m2) for the cartilage 
models. All double-echo steady-state (DESS) MRI scans were 

obtained on the same scanner with identical imaging parameters 

(field of view: 16 cm x 16 cm; image resolution: 0.3 x 0.3 x 1.0 mm; flip angle: 25°; repetition time: 17 ms; echo time: 6 ms). Each participant contributed 
two MRI scans which were previously segmented by experienced researchers and reviewed by a musculoskeletal radiologist. Segmentations were converted 

into binary masks, cropped to 256 x 256-pixel regions of interest, paired with their respective image slice, grouped by participant, and divided into 

training/validation/testing datasets (Bone models = 32/6/4 scans; Cartilage models = 100/22/22 scans). Model Training – A 2D-UNet architecture was used 
for model training [3]. Training was performed using the Duke University high-performance computing cluster and consisted of a grid search performed over 

the following hyperparameters: batch size, filter size, kernel size, and learning rate. Model depth (5), loss function (dice coefficient loss), and epochs trained 

(500) all remained constant. Optimal models were determined by the highest validation set dice score achieved during training and were subsequently applied 
to the testing set. Cartilage Thickness Validation & External Application – Following model development, we validated our trained segmentation models for 

measuring tibiofemoral cartilage thickness and subsequently performed a measurement of running-induced cartilage strain. We utilized a previously published 

dataset investigating patellofemoral cartilage thickness before, immediately after, and 24 hours following a 3-mile treadmill run in 8 asymptomatic males (age: 

27-40 years; BMI: 18-25 kg/m2) [1]. In our analysis, we utilized the trained deep learning models to predict the tibiofemoral bone and cartilage masks, removed 

any clear outliers, created the 3D models, and measured cartilage thickness using a previously validated technique (Figure 1) [10]. We then evaluated cartilage 

thickness repeatability by calculating a two-way, mixed effects, multiple measurement, absolute agreement intraclass correlation coefficient (ICC) and the 
difference in group means between the two unloaded time points (pre-exercise and recovery). Additionally, we calculated cartilage strain at the post-exercise 

time point, where cartilage strain was defined as the change in cartilage thickness normalized to the pre-exercise thickness [10]. Two repeated measures 

ANOVAs with Fisher’s Least Significant Difference post-hoc tests were performed to determine the influence of time point on tibial and femoral cartilage 

thickness. Differences were considered statistically significant where p < 0.05. 

Results: Both bone segmentation models achieved testing set dice scores (DSC) > 0.980 (DSCtibia = 

0.988, DSCfemur = 0.990) and both cartilage segmentation models achieved testing set dice scores > 
0.900 (DSCtibial cartilage = 0.901, DSCfemoral cartilage = 0.913). Regarding day-to-day cartilage thickness 

repeatability, tibial and femoral cartilage measurements achieved ICCs of 0.984 and 0.987, 
respectively, and comparison of group means resulted in differences of 0.02 mm (0.7% of thickness) 

and 0.01 mm (0.4% of thickness) for the tibial and femoral cartilage. In our analysis of running-

induced changes to cartilage thickness, we detected a significant effect of time point (Tibia:  p < 
0.00001, Femur: p < 0.01) with a mean post-exercise compressive strain of 5.4 ± 1.3% (mean ± 95% 

CI, p < 0.0001) for the tibial cartilage and 2.3 ± 1.7% (mean ± 95% CI, p < 0.01) for the femoral 

cartilage (Figure 2).  

Discussion: In summary, we successfully trained, validated, and externally applied a suite of deep 

learning models for segmenting the tibia, femur, tibial cartilage, and femoral cartilage from knee MRI 

scans. Each of the four models achieved testing set DSCs indicative of substantial agreement between 
automatic and manual segmentations. Following model development, we evaluated cartilage thickness 

measurement repeatability by comparing thickness between the pre-exercise and recovery time points. 

This comparison encompassed both measurement error and day-to-day variance in cartilage thickness 
and resulted in ICCs that indicate excellent measurement repeatability, and differences in group means that fall within the previously reported manual 

measurement resolution of this technique (<1%) [10]. Further, in our external application we measured significant tibiofemoral cartilage compressive strains 

in response to a 3-mile run. Importantly, application of our trained deep learning models reduces the segmentation time from an order of days to minutes.  

Significance: In this work, we demonstrated the efficacy of using trained deep learning segmentation models to expedite in vivo measures of cartilage function 

and further performed a novel measurement of tibiofemoral cartilage strains in response to a 3-mile run. 
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