Protease

protease were 5B5 positive cells at the interface (Figure 1-A & 1-B). Immunohistochemical labeling indicated that the only cells producing the pseudosynovium interface (Figure 1-E & 1-F). The cathepsin K cryostat sections, with an apparent increase in signal towards the bone cemented prostheses. These fibroblasts are similar to those seen at the destructive interface of the rheumatoid synovium. In rheumatoid arthritis, these fibroblasts have been observed producing cathepsin K and are considered activated in view of their morphology and expression of VCAM-1 and several oncogenes. This study investigated the potential for activated fibroblasts at the bone pseudosynovium interface to produce matrix-degrading enzymes.

Introduction

The potential role of fibroblasts in aseptic loosening of total hip arthroplasties has only recently been studied, and is a controversial topic. The popular view of osteolytic destruction is that macrophages become activated through phagocytosis of particles and release cytokines that cause bone resorption. Fibroblasts, which compose the majority of cells in the pseudosynovial membrane, also have the potential to be both phagocytic and destructive in vitro. However, their possible role in loosening of total hip arthroplasty is often overlooked. Recently we demonstrated that fibroblasts with a “transformed like” appearance and phagocytotic and destructive interface in the rheumatoid synovium. In rheumatoid arthritis, these fibroblasts have been observed producing cathepsin K and are considered activated against the interface and expression of VCAM-1 and several oncogenes. This study investigated the potential for activated fibroblasts at the bone pseudosynovium interface to produce matrix-degrading enzymes.

Methods

Specimens of pseudosynovial membrane were collected from 8 patients undergoing revision surgery for aseptically loosened, cemented prostheses with osteolysis. Pieces of the bone/membrane interface from each patient were snap frozen in isopentane cooled with liquid nitrogen. Serial 6μm sections were cut on a cryostat and labeled with antibodies specific for macrophages (CD68 (EBM11 clone)) and fibroblasts (prolyl-4 hydroxylyase, 5B5 clone). Cathepsin K expression was investigated using a polyclonal antibody. Labeling was performed on serial sections using standard PAP for cathepsin K and indirect fluorescent (FITC) immunohistochemistry for CD68 and 5B5. Substitution of the monoclonal antibodies with 0.1% BSA in PBS and isotype or isogenulbs served as negative controls. In situ hybridisation was performed using an anti-digoxigenin technique as described previously using sense and anti-sense probes against cathepsin K (position 589 - 1014 of published sequence, GenBank accession-number S79895).

Results

The immunohistochemistry results concurred with our earlier results i.e. macrophages were found away from the bone pseudosynovium interface (Figure 1-D), with the predominant cell type being 5B5 positive fibroblasts (Figure 1-A). Cathepsin K expression was evident in the all samples examined by immunohistochemistry and in situ hybridisation. The signal visualised by in situ hybridisation was present in cells throughout the cryostat sections, with an apparent increase in signal towards the bone pseudosynovium interface (Figure 1-E & 1-F). The cathepsin K immunohistochemical labeling indicated that the only cells producing the protease were 5B5 positive cells at the interface (Figure 1-A & 1-B).

Discussion

Earlier studies have demonstrated cathepsin K expression by macrophages and osteoclasts. Previously, we demonstrated the similarity of the fibroblasts seen at the bone interface of the pseudosynovium to the destructive interface of the rheumatoid synovium, i.e. the activated phenotype with an enlarged nucleus with multiple nucleoli and increased cytoplasmic area. These activated fibroblasts have been shown, in rheumatoid synovium, to play an active role in matrix degradation. The expression of cathepsin K, a major osteoclastic protease, by fibroblasts at the bone interface of failed cemented prostheses, further demonstrates the similarities between the activated fibroblasts seen in the two pathological situations. In addition, it demonstrates the potential these fibroblasts have to produce proteases that can degrade the extracellular matrix. This observation indicates that tissue fibroblasts seen in the pseudosynovium of failed cemented prostheses may play a more important role in the osteolytic process than previously thought. Whilst other cell types such as macrophages and giant cells produce matrix degrading enzymes, it is likely that activated fibroblasts will also contribute to the bone loss seen in prosthesis loosening.

References

Acknowledgements: This work was supported by grants from Howmedica Inc., Rutherford, New Jersey and the Special Trustees of UBHT, Bristol, UK.

Centre of Internal Medicine, Univ Göttingen, Robert Koch Strasse 40, 37075 Göttingen, FR Germany

Howmedica Inc., Rutherford, New Jersey, USA

Department of Orthopaedic Surgery, Bristol Royal Infirmary, Bristol, BS2 8HW, UK

Zürich, Switzerland

Corresponding Author: Iain Sainsbury

Billingham, M.E.J., + OSCOR Facility, Bristol University, Southwell Street, Bristol, BS2 8EJ, UK. Tel 44 (0) 117 9288367 Fax 44 (0) 117 9254794 Email I.S.S.Sainsbury@bris.ac.uk

Accession: 548x594

First Name Last Name

Electronic File Name

Title: CATHEPSIN K EXPRESSION BY ACTIVATED FIBROBLASTS AT THE BONE INTERFACE OF THE PSEUDOSYNOVIIUM IN ASEPTIC PROSTHESIS LOOSENING

Supply first keyword from one of these lists: None Orthopaedic Pathology

Supply 4 remaining keywords from the list in the Instructions: Prosthesis Interface

Zürich, Switzerland