QUESTION 1: Does the number of individuals in the operating room (OR) affect the rate of surgical site infection/periprosthetic joint infection (SSI/PJI)? If so, what strategies should be implemented to reduce traffic in the OR?

RECOMMENDATION: Yes. The number of individuals in the OR and door openings (DO) during total joint arthroplasty (TJA) are correlated to the number of airborne particles in the OR. Elevated airborne particles in the OR can predispose to subsequent PJsIs. Therefore, OR traffic should be kept to a minimum. Multiple strategies, outlined below, should be implemented to reduce traffic in the OR during orthopaedic procedures.

LEVEL OF EVIDENCE: Moderate

DELEGATE VOTE: Agree: 98%, Disagree: 2%, Abstain: 0% (Unanimous, Strongest Consensus)

RATIONALE

The number of persons and DOs in the OR have been reported to disrupt the airflow [1–4], and therefore affect the quality of air in the OR. No high-level evidence study exists, though, to directly link the OR traffic with the development of PJsIs. The multivariate nature of PJsIs as well as its low incidence require an enormous study population to directly evaluate the influence of OR traffic on PJsIs, which is technically difficult.

There is no consensus on the best methods of monitoring air quality in the OR [5–9]. Though particle counting is less demanding and more standardized than microbiological sampling, the information obtained is indirect. Furthermore, the air particle counts cannot accurately predict the microbial contamination of the OR air [10].

The number of personnel in the OR and number of DOs have been recognized as a major source of increased number of particles in the OR air [5,11,12]. Several observational studies have demonstrated a positive relationship between the number of individuals and DOs and the number of aerosolized particles in the OR [3,11,13,14]. Ritter et al. [15] reported that the bacterial counts were 34-fold higher when 5 or more persons were present, compared to an empty OR.

DOs may lead to increased contamination rates by two mechanisms. First, DOs in the OR are linked to the number of staff in the OR during operations [16]. Second, DOs create turbulence between two spaces and disrupt the positive laminar flow of the OR which might subsequently lead to faster spread of airborne bacteria and particles to the surgical field [1,13,17,18]. Andersson et al. [14] showed a positive correlation between traffic flow rates and air bacterial counts in orthopaedic procedures. They also identified a direct correlation between the number of people present in the OR and bacterial counts. Quraishi et al. [19] demonstrated a direct correlation between the activity level of OR personnel and bacterial fallout into the sterile field. Additionally, Lynch et al. [20] showed an exponential relationship between the number of DOs and the number of personnel in the OR. In their series, an information request was the main reason for the majority of DOs.

Several studies have evaluated the incidences and causes of DOs during elective TJAs [8,18,20–22]. Rates of 0.19/min to 0.65/min DOs for primary and 0.84/min for revision TJAs have been reported [3,18,20,21]. The highest percentage of DOs occur during the pre-incision [18] or post-incision periods [10]. The majority of the traffic constitutes of the circulating nurses, followed by surgical implant representatives and then the anesthesia and orthopaedic staff [18,20,21]. The most frequently-reported single reason for DOs is getting supplies along with gathering and transferring information. Scrubbing in and out during the procedure, staff rotation for breaks, talking with colleagues in the corridor, coordinating with nursing and anesthesia personnel were also reported as reasons for DOs [18,21]. It is important to note that the rate of unjustified traffic was considerably high among different studies [8,18].

Experimental, observational and simulation studies have evaluated the influence of OR traffic on the OR environment [4,13,23–26]. Mears et al. [23] identified that DOs in 77 of 191 TJAs overwhelmed the positive OR pressure, allowing airflow to reverse from the hallway into the OR. The loss of positive OR pressure was a transient phenomenon, however the time needed for the recovery of pressurization was unknown. On the contrary, Weiser et al. [4] reported that positive pressure was not defeated during any single DO, however they found that contaminated outside air entered the OR if two doors were simultaneously opened. In their study, OR pressure recovery took approximately 15 seconds following a DO. They supported that OR contamination was more likely attributable to the effects of the personnel who enter the OR rather than as a primary cause of DOs. Furthermore, Rezapoor et al. [25] demonstrated that the laminar airflow was protective against the negative influences of the number of people and partially of DOs. Smith et al. [13] also showed that bacteria colony forming units cultured on plates placed in sterile basins in the OR during the operation were significantly negatively associated with any DOs and the function of laminar air flow.

An increased trend of PJsIs is associated with high OR traffic [2,11,17,27]. Pryor et al. [27] demonstrated a positive, but non-significant, correlation between the total number of people who enter the OR and infection rates. In a cohort of 2,864 operated patients, the infection rate was 1.52% when fewer than 9 and 6.27% when more than 17 different people entered the OR. Cross-sectional observational studies evaluated the effects of measures to control OR traffic and the number of personnel as a preventative strategy in reducing PJsIs [1,18,28]. Knobben et al. [28] observed that systemic and behavioral measures in the OR, including limiting unnecessary activity and individuals in the OR, can lead to a significant reduction in the incidence of prolonged wound discharges and superficial PJsIs as well as a non-significant decrease in the deep PJsIs. It was, however, difficult to determine the influence of each measure on the final results.

Numerous strategies have been proposed to reduce OR traffic and subsequent contamination of the OR environment. These include: (1) Limitation of the number of persons who are present during orthopaedic procedures - observers, residents, researchers and external vendors should be kept to a minimum [3,18]; (2) Storage of the frequently used instruments in the OR; (3) Proper education of OR personnel regarding the potential correlations between OR traffic and infections [4,13,18,20]; (4) Careful preoperative planning and templating so as to have all necessary supplies and implants in the OR [18,26]; (5) Reduction of the OR traffic using verbal interventions to the staff [1]; (6) Lockage of the external door immediately after the entry of the patient into the OR with entrance only through the inner doors [4,13,21]; (7) Minimization of the staff rotation during each TJA...
ideally to zero [21]; (8) Use of the intercom for communication with the outer door [3]; (9) No door openings for social visits, clinical discussion or anesthetic supplies for the next case; (10) Use of a door alarm to decrease DOs [29]; (11) Prohibition of staff to enter or leave the OR unnecessarily and (12) Opening the necessary equipment as close as possible to the time of incision in order to reduce the exposure of the sterile instruments to the increased traffic [18].

REFERENCES


Authors: Pier Francesco Indelli, Andrea Baldini
QUESTION 2: Does the risk of surgical site infection/periprosthetic joint infection (SSI/PJI) increase when the surgeon performing the arthroplasty procedure has an upper respiratory infection?

RECOMMENDATION: It is unlikely that the risk of SSIs/PJIs is increased in patients undergoing orthopaedic procedures when the surgeon or surgical team has an upper respiratory infection.

LEVEL OF EVIDENCE: Moderate

DELEGATE VOTE: Agree: 85%, Disagree: 8%, Abstain: 7% (Super Majority, Strong Consensus)

RATIONALE

Reports of the transmission of hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV) from healthcare workers to patients during invasive procedures have raised the question of whether physicians infected with upper airways pathologies should perform invasive orthopaedic procedures such as joint arthroplasty. [1,2]. It has been previously suggested that surgeons affected by HBV, HCV and/or HIV should not (strong recommendation: against) perform major joint arthroplasty surgery (e.g., hip, knee, shoulder and elbow), open spine surgery and/or open pelvic surgeries because of the very high risk of disease transmission to patients [3]. However, very little is known on the risks of potentially increased SSIs/PJIs when the surgeon performing the arthroplasty has an upper respiratory infection. On the other hand, Navalkele et al. demonstrated that surgical site infections were more likely to develop in patients who had respiratory tract infections within 30 days prior to surgery (20 vs. 6.6%, odds ratio (OR): 3.42; 95% confidence interval (CI) 1.62 to 7.22, p = .0034) [4].

Surgical site contamination by airborne particles is ascribable in some cases to direct settling of the particles on the wound [5]. As a result, we conclude that the widespread use of PPEs, in addition to the usual contact transmission prevention precautions, protect the susceptible patient from disease transmission and PJI development. However, the lack of high-level evidence results in a moderate level of strength for this recommendation.

REFERENCES

QUESTION 3: Does the technique, duration or agent used for surgical hand scrubbing by the surgeon and operating room personnel alter the patient’s risk of surgical site infections/periprosthetic joint infections (SSIs/PJIs)?

RECOMMENDATION: Unknown. Surgical hand preparation should be performed either by traditional scrubbing with a suitable antimicrobial soap and water or by using a suitable alcohol-based hand cleansing agent.

LEVEL OF EVIDENCE: Moderate

DELEGATE VOTE: Agree: 93%, Disagree: 5%, Abstain: 2% (Super Majority, Strong Consensus)

RATIONALE

Multiple reviews have been performed in order to study this matter, however none of these reviews have been able to show differences between different surgical hand antisepsis on SSIs rates. There is indicative evidence advocating alcohol-based hand rubs (ABHRs), which reduce colony forming units (CFUs) in hands better than traditional scrubbing as well as cause less skin damage in comparison [1–7].

A Cochrane database review was published in 2016 assessing the effect of different surgical hand antiseptics on preventing SSIs. They compared the effects of different techniques (i.e., hand rubbing vs. hand scrubbing), products (i.e., different formulations of ABHRs vs. plain soap vs. medicated soap) and application times for the same product. The conclusion was that there is no firm evidence that one type of hand antisepsis is better than another in reducing SSIs [2].

The review concludes that there is evidence that the ability of different hand antiseptics to reduce CFUs is different but the clinical outcomes of these findings are unclear. Chlorhexidine gluconate (CHG) scrubs may reduce the number of CFUs on hands compared with povidone iodine (PVPI) scrubs. Alcohol rubs with additional antiseptic ingredients may reduce CFUs compared with aqueous scrubs [2].

This review also evaluated the duration of hand antiseptic, and concluded that a three-minute scrub reduced CFUs on the hand compared with a two-minute scrub but this was very low-quality evidence. Furthermore, findings about a longer initial scrub and subsequent scrub durations are not consistent. It is also unclear whether nail picks and brushes have an impact on the number of CFUs remaining on the hand. The Cochrane review states that almost all evidence available to make decisions about hand antiseptic were informed by low or very low-quality evidence [2].

The World Health Organization’s recommendations on preoperative measures for SSI prevention published in 2016 state that the overall evidence (rated as moderate quality) showed no differences between ABHR and hand scrubbing in reducing SSIs. They also concluded that studies using CFUs on participants’ hands as the outcome showed that some ABHRs are more effective than scrubbing with water and antiseptic or plain soap. However, the relevance of this outcome to the risks of SSIs is uncertain [1].

Oriel et al. published a study in 2017 in which the authors reported the incidence of SSIs after introducing ABHR as an alternative to traditional aqueous surgical scrubs. The SSIs rates for traditional scrubbing (n = 4,051), and ABHR (n = 2,293) were similar (1.8 vs. 1.5%, p = 0.31) [6,7].

Also, in 2016, Oriel and Itani found that none of the SSI studies have shown any benefit of one product type over another, even though the literature shows the inferiority of PVPI to both CHG and ethyl alcohol (EA). EA often outranks CHG in non-clinical in vivo tests. Both ABHRs and CHG are preferred to PVPI for surgical hand antiseptic [3].

In 2015, Shen et al. performed a study to compare a conventional surgical scrub with an ABHR in order to evaluate antimicrobial efficacy. They performed hand sampling for cultures before and after operations. The culture positive rates of ABHR were 6.2% before operations and 10.8% after operations. Both rates were lower than the conventional surgical scrub (47.6% before operations and 51.2% after operations) [1–7].

The conclusion was that there is no firm evidence that one type of hand antiseptic is better than another in reducing SSIs [2].

Multiple reviews have been performed in order to study this matter, however none of these reviews have been able to show differences between different surgical hand antisepsis on SSIs rates. There is indicative evidence advocating alcohol-based hand rubs (ABHRs), which reduce colony forming units (CFUs) in hands better than traditional scrubbing as well as cause less skin damage in comparison [1–7].

A Cochrane database review was published in 2016 assessing the effect of different surgical hand antiseptics on preventing SSIs. They compared the effects of different techniques (i.e., hand rubbing vs. hand scrubbing), products (i.e., different formulations of ABHRs vs. plain soap vs. medicated soap) and application times for the same product. The conclusion was that there is no firm evidence that one type of hand antisepsis is better than another in reducing SSIs [2].

The review concludes that there is evidence that the ability of different hand antiseptics to reduce CFUs is different but the clinical outcomes of these findings are unclear. Chlorhexidine gluconate (CHG) scrubs may reduce the number of CFUs on hands compared with povidone iodine (PVPI) scrubs. Alcohol rubs with additional antiseptic ingredients may reduce CFUs compared with aqueous scrubs [2].

This review also evaluated the duration of hand antiseptic, and concluded that a three-minute scrub reduced CFUs on the hand compared with a two-minute scrub but this was very low-quality evidence. Furthermore, findings about a longer initial scrub and subsequent scrub durations are not consistent. It is also unclear whether nail picks and brushes have an impact on the number of CFUs remaining on the hand. The Cochrane review states that almost all evidence available to make decisions about hand antiseptic were informed by low or very low-quality evidence [2].

The World Health Organization’s recommendations on preoperative measures for SSI prevention published in 2016 state that the overall evidence (rated as moderate quality) showed no differences between ABHR and hand scrubbing in reducing SSIs. They also concluded that studies using CFUs on participants’ hands as the outcome showed that some ABHRs are more effective than scrubbing with water and antiseptic or plain soap. However, the relevance of this outcome to the risks of SSIs is uncertain [1].

Oriel et al. published a study in 2017 in which the authors reported the incidence of SSIs after introducing ABHR as an alternative to traditional aqueous surgical scrubs. The SSIs rates for traditional scrubbing (n = 4,051), and ABHR (n = 2,293) were similar (1.8 vs. 1.5%, p = 0.31) [6,7].

Also, in 2016, Oriel and Itani found that none of the SSI studies have shown any benefit of one product type over another, even though the literature shows the inferiority of PVPI to both CHG and ethyl alcohol (EA). EA often outranks CHG in non-clinical in vivo tests. Both ABHRs and CHG are preferred to PVPI for surgical hand antiseptic [3].

In 2015, Shen et al. performed a study to compare a conventional surgical scrub with an ABHR in order to evaluate antimicrobial efficacy. They performed hand sampling for cultures before and after operations. The culture positive rates of ABHR were 6.2% before operations and 10.8% after operations. Both rates were lower than the conventional surgical scrub (47.6% before operations [p < 0.001], and 25.4% after operations [p = 0.03]). Multivariate analysis showed that ABHR was a significant protective factor for positive hand cultures [5].

Liu et al. published a review in 2016 in which the authors studied the influences of different hand antisepsis on SSIs rates and skin integrity. They advocate ABHR because it appears to cause less skin damage than traditional scrub protocols but is as effective as traditional scrub. Some studies have demonstrated relatively poor compliance for optimal scrubbing time and techniques by personnel using a brush with personnel preferring to use ABHRs [4].

REFERENCES


QUESTION 4: Does the type of cap worn by the operating room (OR) personnel matter?

RECOMMENDATION: Unknown. The evidence would suggest that, since normal hygiene such as daily shampooing and showering does not result in bacterial decontamination of OR personnel, some form of disposable head covering is prudent. Whether this takes the form of a bonnet, bouffant or helmet is unknown. We recommend that the cap should cover the entire scalp, ears and facial hair.

LEVEL OF EVIDENCE: Limited

DELEGATE VOTE: Agree: 94%, Disagree: 4%, Abstain: 2% (Super Majority, Strong Consensus)

RATIONALE

Human hair serves as a reservoir for bacteria shedding and as a potential source of contamination in the operating theater [1]. Summers et al. cultured bacteria from the hair of inpatients, hospital staff and outpatients and compared them with nasal carriage, finding that Staphylococcus aureus colonization was even more common in scalp hair than in the nares [1]. It is critical to determine the most appropriate surgical cap for limiting bacterial spread and desquamation from the skin/hair of OR personnel in order to minimize potential contamination, even with most modern ventilation systems [2].

A study in 1991 recommended the discontinuation of headwear in OR staff, and determined that adequate ventilation and laminar flow was enough to combat microbial shedding, as the authors did not find significant reductions in microbial air counts with use of head covers [3]. However, conflicting evidence arose when a study by Fridberg et al. [4] demonstrated that airborne contaminants were three to five times (p < 0.001) greater compared to the absence of headwear. Additionally, they found that wound contamination without the use of headwear increased by 60-fold in comparison to wearing head covers. The authors concluded that laminar flow units should be held in question with regard to replacing the use of head covers and in the risk of surgical surface contamination.

At present time, there are few studies published within the past decade comparing different types of caps, their effects on OR environment bacterial counts and surgical site sterility. A recent study by Markel et al. [5] investigated the degree of airborne contaminates with different head covers (disposable skull caps, disposable bouffant hats and cloth skull caps) in the OR during standardized mock surgical procedures. They measured the number of particulates being 0.5-µm and 1.0-µm in size and found that there were significantly higher numbers of airborne particulates when disposable bouffant hats were used compared to cloth surgical caps (p < 0.05). There was no significant differences seen in airborne particulates after active sampling when comparing bouffant hats with disposable surgical hats. However, for passive settle plate analysis, it was determined that bouffant style hats allowed for a significantly greater amount of microbial shedding at the sterile field compared to disposable skull caps (p < 0.05). They further concluded that disposable bouffant hats had a higher permeability/porosity and yielded higher levels of bacterial shedding in the OR. They endorsed the use of skull caps for reducing the potential risk of contamination from scalp hair. This, however, is against the recommendation of the Association of Perioperative Registered nurses for OR personnel to wear bouffant caps. It should be considered that the outcome used was contamination in vitro in comparison to actual surgical site infections (SSIs) seen in surgical patients [6].

More recently, a study by Kothari et al. [7] revealed that SSI rates were not significantly different (p = 0.016) in surgical cases where attending surgeons wore bouffant hats (8%) versus in those where surgeons wore surgical skull caps (5%). The authors analyzed data from a previous prospective randomized trial on SSIs in accordance with hair clippings in a multitude of surgical specialties and in more than 1,500 patients. These findings are in contrast to the findings of the studies by Markel et al. [6] and Kothari et al. [7], which advocated for operating room staff to choose OR head attire based on preference as the choice in OR headwear did not play a role in the development of both superficial and deep SSIs [5,7].

It can be concluded that with a scarcity of recent literature addressing the use of different surgical caps on the impact of bacterial shedding/airborne particulates and the potential for SSIs in the OR, it is recommended that further research is needed to substantiate the claims made regarding OR headwear. Clearly, a randomized trial of coverage versus none would be unethical to conduct. There is ample evidence, however, to suggest that gram-positive bacteria are often carried on the facial skin, hair and ears of hospital personnel. Several case studies report on outbreaks of SSIs with unique bacterial strains associated with carriage by identified surgical team members.

REFERENCES

QUESTION 5: Should surgeons and operating room (OR) personnel wear a mask and a cap in the OR?

RECOMMENDATION: Yes. The use of surgical facemasks (SFMs) and caps by staff in the OR is presumed to reduce the frequency of surgical site infections (SSIs). There is a paucity of data with few studies addressing this topic. The long-standing established standard of SFMs and caps in the OR should continue despite the lack of strong evidence demonstrating clinical efficacy and a lack of persuasive evidence for altering current clinical practice. Evidence for the potential role for SFMs in protecting staff from infectious material encountered in the OR is also controversial. In the absence of convincing clinical evidence either for or against wearing masks and caps in the OR, it is advisable, at this time, to continue to follow local or national health and safety regulations.

LEVEL OF EVIDENCE: Limited. Conflicting study results are published. Further research is likely to have an important effect on our confidence in the response and may change this recommendation. The evidence is currently supported only by observational studies, with no randomized control trials or other high level studies available.

DELEGATE VOTE: Agree: 98%, Disagree: 1%, Abstain: 1% (Unanimous, Strongest Consensus)

RATIONALE

Surgeons and nurses typically wear disposable facemasks and caps in the OR. The purpose of face masks is thought to be two-fold: (1) to prevent the passage of bacteria from the surgeon’s nose and mouth into the patient’s wound and (2) to protect the surgeon’s face from sprays and splashes from the patient. Facemasks are thought to make wound infections after surgery less likely. However, incorrectly-worn masks may paradoxically increase the likelihood of the wound becoming contaminated with shed skin and debris. It is unclear if by wearing facemasks the surgical team increases or decreases the risk of SSIs in patients undergoing clean surgeries including elective joint arthroplasties [1].

Infections occurring in a wound created by an invasive surgical procedure are referred to as SSIs. Postoperative wound infections increase the length-of-hospitalization, and predictably, substantially raise the costs of care. SSIs account for a marked fraction of health care associated infections, and can be associated with considerable morbidity, with estimates that over one-third of postoperative deaths are at least partly attributable to SSIs. In the OR there are, therefore, many procedures and practices in place intended to reduce the probability of infectious material transfer between OR staff and patients [2].

SFMs provide a physical barrier between bacteria of oropharyngeal and nasopharyngeal origin and an open wound. Additionally, SFMs potentially protect OR staff by providing a physical barrier to infectious bodily fluid splashes from the patient. Wearing a SFMs in the OR is one of many long-standing preventative practices, yet controversy still exists as to the clinical effectiveness of SFMs in reducing the frequency of SSIs. General-purpose disposable SFMs, however, are not specifically designed to protect the wearer from airborne infectious particulates [3].

The 1999 Centers for Disease Control and Prevention’s (CDC) “Guideline for Prevention of Surgical Site Infection” [4] strongly recommended the use of SFMs for prevention of SSIs. The 2007 CDC “Guideline for Isolation Prevention” [5] reiterated the recommended use of different qualities of SFMs for sterile procedures without adding any new scientific data in support of this recommendation. Most international guidelines acknowledge the controversy surrounding the use of disposable SFMs [6,7] with no clear clinical or experimental evidence that wearing SFMs effectively diminishes the incidence of SSIs. The incidence of SSI is itself dependent upon multiple other variables, particularly the patient’s immunological status, and the behavior of the surgical team in and around the operative field.

The systematic review by Lipp and Edwards [8] included 2,106 patients undergoing elective clean surgeries. Clean surgery is defined as surgery where no inflammation is encountered and the alimentary, respiratory and genitourinary tracts are not entered. The conclusion from the study was unclear whether the wearing of SFMs by the surgical team increased or decreased the risks of SSIs. The systematic review by Bahli [9] included data on 8,311 patients undergoing elective surgeries and concluded that the evidence regarding the efficacy of SFMs in preventing postoperative wound infections in elective surgery is inconclusive. At this time, therefore, it is still difficult to recommend changing the established clinical practices of wearing facemasks in rooms on the basis of current evidence.

The topic of OR headgear has been very controversial and the quality of data used to support OR policy surrounding this topic is marginal. A 1991 study by Humphries et al. suggested that wearing any type of headgear in the OR did not decrease bacterial counts. However, the use of proper ventilation techniques drastically reduced these counts and the authors concluded that non-scrubbed individuals did not need to wear headgear because proper ventilation likely counteracted any bacterial shedding [10]. Ten years later, however, a conflicting study by Friberg et al. demonstrated a two-to-five-fold increase in bacterial contamination at random sites throughout the OR when headgear was not worn and a 60-fold increase in contamination in the wound bed [11]. Considering these results, it is apparent that wearing headgear markedly decreases the probability of spreading fomites and debris to an open surgical wound. However, it remains uncertain whether this translates into a greater risk of SSIs and periprosthetic joint infections as no study specifically examining this possibility has ever been conducted.

Humphreys et al. performed air cultures in a sealed OR when volunteers wore either surgical hoods or no head coverings. The investigators found little effects of a head cover on volumetric air sampling cultures (i.e., no settle plates were used to simulate settling of bacteria near an OR bed). Nevertheless, the investigators concluded that personnel assisting in the surgical procedure should continue to wear head coverings [10]. Markel et al. [12] observed that disposable bouffant style hats had high permeability, greater particle penetration and increased porosity, leading to higher levels of
bacterial and particulate contamination in a dynamic OR environment. When compared with disposable skullcaps, bouffant hats cannot be considered superior. Furthermore, if properly laundered, the use of cloth skullcaps may yield better sterility compared with standard disposable bouffant hats.

The use of SFMs and caps by staff in the OR is presumed to reduce the frequency of SSIs. Although there is a paucity of solid data on this topic, there is no persuasive evidence to indicate any rationale for altering clinical practices. The long-standing practice of wearing SFMs and caps in the OR should continue despite the lack of strong clinical evidence supporting their use. Evidence supporting the potential role for SFMs in protecting staff from infectious material encountered in the OR is also controversial. In the absence of strong clinical evidence for or against wearing masks and caps in OR, it is advisable at this time to continue to follow local or national health and safety regulations.

REFERENCES


Authors: Kier Blevins, Robin Patel, Karan Goswami

QUESTION 6: Does the presence of exposed facial hair (beard and mustache) on any operating room (OR) staff or surgeon influence the rate of surgical site infections/periprosthetic joint infections (SSIs/PJIs) in patients undergoing orthopaedic procedures?

RECOMMENDATION: Although facial hair may increase the risk of bacterial contamination under certain circumstances, risks should ideally be assessed in the context of masking, with and without nonsterile hoods, where limited and contradictory data exists.

LEVEL OF EVIDENCE: Consensus

DELEGATE VOTE: Agree: 89%, Disagree: 5%, Abstain: 6% (Super Majority, Strong Consensus)

RATIONALE

Facial hair has the potential to harbor pathogenic bacteria and even with routine hygiene, bacterial shedding from these sources may lead to contamination resulting in infection during surgical procedures. At any given moment, the inner surface of an OR staff’s surgical mask contains up to 100 times the amount of bacteria that is present on the OR floor [1]. However, even after the strict advent of OR policies mandating the coverage of exposed head and facial hair, there has been little to no evidence of decreased SSIs [2]. For surgeons and scrubbed personnel, it remains a controversial topic whether beards and exposed facial hair predispose patients to increased risks of infections in the OR [3]. A study examining the relative contamination of air in ORs showed that of those who were dispensers of *Staphylococcus aureus* (4%, n = 3,039), 15.5% of these subjects had *Staphylococcus aureus* colonizing in their beards [4].

A study by Parry et al. investigated aerobic bacterial shedding in 10 bearded men, 10 clean-shaven men and 10 women by measuring colony forming units (CFUs), after having each cohort make standardized facial motions above agar plates while unmasked, masked and in surgical hoods [5]. They found the CFUs and bacterial shedding in the bearded group was no greater in comparison to the clean-shaven group when masked (1.6 vs. 1.2 CFUs, p = 0.9). Unmasked (9.5 vs. 3.3 CFUs, p = 0.1) or in surgical hoods (0.9 vs. 1.3 CFUs, p = 0.6). Additionally, they found that surgical hood use did not decrease the total number of bacteria isolated per subject with a mean of 1.1 CFUs while hooded vs. 1.4 CFUs with the mask alone (p = 0.5). Unmasked subjects shed a mean of 6.5 CFUs more than the number shed while masked (p = 0.02) or hooded (p = 0.01). The authors also found that when participants were stratified by beard length, those with beards 20 mm or longer shed more than clean-shaven subjects when unmasked (18 vs. 3.3 CFUs, p = 0.03), but this difference was eliminated with the addition of a mask. The authors concluded that beards in an operative environment appear to add no definitive risks of bacterial shedding in comparison to those who do not have facial hair, when proper facial coverings are utilized.
Conversely, a study by McLure et al. found that bearded males shed significantly more bacteria than clean-shaven males (p = 0.01) or females (p = 0.01) at rest with masks [6]. They also examined the effects of dermabrasion due to mask adjustments and wiggling on the shedding of bacteria in those with and without facial hair in a study of 10 bearded men, 10 clean-shaven men and 10 women all who wore masks above agar plates. The authors recommended avoidance of behaviors that encourage unnecessary face mask movement and concluded that it may be advisable to remove facial hair in an operative environment due to the potential risk of bacterial shedding.

As an alternative to facial hair removal, nonsterile surgical hoods used alongside face masks may be considered. In a study examining the air-borne transmission of bacteria and particles during standardized sham operations (n = 30), there was up to a 60-fold increase in bacterial sedimentation rate (p < 0.01) found in surgical wounds when no head covers (disposable hood/triple laminar face mask or sterilized helmet aspiratory system) were worn [7]. Thus, irrespective of whether facial hair is present or not, it may be necessary under specific circumstances to have some form of headwear during surgical procedures for scrubbed personnel.

REFERENCES


QUESTION 7: Does strict adherence to not wearing operating room (OR) attire outside the hospital or outside the restricted OR area reduce the risk of surgical site infections/ periprosthetic joint infections (SSIs/PJIs)?

RECOMMENDATION: We recommend that OR personnel wearing attire that has come into contact with areas outside the restricted OR environment not wear the same attire during elective arthroplasty or complex orthopaedic procedures.

LEVEL OF EVIDENCE: Consensus

DELEGATE VOTE: Agree: 90%, Disagree: 8%, Abstain: 2% (Super Majority, Strong Consensus)

RATIONALE

The use of standardized OR attire has been implemented to help reduce the shedding and desquamation of human cells and bacteria from the skin of personnel in restrictive hospital environments [1–3]. Specific institutions have further aimed to reduce contamination by requiring the use of covers and gowns over scrubs when leaving restrictive hospital environments, such as the OR [1–3].

Various institutions utilize these protocols to date, even in light of the deficient data on whether OR attire worn outside restricted hospital environments plays a role in the development of SSIs and/or PJIs. A report from the Hospital Infection Society Working Group in 2002 examined the ritualistic behaviors and numerous studies regarding the methods of sterility in the OR [4]. They determined there to be little to no concrete evidence showing that wearing OR attire in external unrestricted hospital environments and returning without changing led to an increase in SSIs and the rates of wound infections [4].

There have been some studies examining how surgical attire and hospital scrubs collect contaminants upon travel outside the hospital and restricted OR areas. A prospective cross-over study performed by Hee et al. examined fabric samples from the scrubs of 16 anesthesiologists divided into 3 cohorts that had worn their scrubs in different environments (Group 1: OR only, Group 2: OR and hospital wards, Group 3: OR, hospital wards and outpatient offices) in an effort to determine the level of contamination to attire as result of different environmental factors [5].

Fabric samples were collected for microbiological analysis from the chest, waist and hip of each anesthetist every 150 minutes over the course of an 8-hour work day. The group determined there to be no significant differences in the bacterial colony counts among the 3 cohorts in comparing the bacterial colony-forming units (CFUs) (p = 0.669 for Group 1: 16.8 CFU vs. Group 2: 15.3 CFU; p = 0.942 for Group 1: 16.8 (95% confidence interval (CI) (9.8, 23.8)) CFU vs. Group 3: 17.1 CFU (95% CI (10.1, 24.1))); and p = 0.616 for Group 2: 15.3 CFU (95% CI (8.3, 22.3)) vs. Group 3: 17.1 CFU (95% CI (10.1, 24.1)) [5]. Additionally, a study by Sivanandan et al. examined the level of garment contamination by comparing blood agar plates pressed against the OR attire of 20 physicians (at 2-hour intervals during an 8-hour period) who had worn scrubs inside and outside OR attire designated areas [6]. Their results also suggested that the levels of contamination were comparable between the groups that wore OR attire within restrictive OR attire settings and those that wore OR attire outside these settings [6].

Authors: Kier Blevins, Annette W.-Dahl, Parag Sancheti
Similar results were seen in a study by Kaplan et al., comparing pieces of fabric that were analyzed by traditional cultures in physicians wearing scrubs inside/outside designated zones (including outside the hospital) and also with/without cover garments outside allocated areas [7]. The results were based on a total of 75 participants that each provided fabric samples from 2 sites that were believed to represent areas of likely contamination. In total, 150 samples were collected during the project, 50 from each study arm. The three groups were composed as follows: Group 1: scrubs worn in designated areas and a protective covering was worn when outside these zones and they never left the hospital, Group 2: scrubs worn in designated areas and outside with protective covering and they never left the hospital and Group 3: scrubs worn inside/outside designated areas without protective covering and they were allowed to go outside the hospital. The percentage of agar samples with growth (at 24 and 48 hours) for the various fabric samples taken from each group were as follows: Group 1: 47 and 66%, Group 2: 38 and 56% and Group 3: 56 and 70% of agar samples with growth [7]. The authors determined that wearing cover garments over OR attire did not reduce that rates of contamination and that there were no significant differences (p = .55) in groups with attire worn outside the hospital and outside restricted zones [7].

In contrast to the aforementioned studies, a study by Mailhnot et al., with a similar design to Kaplan et al., found that there were significant differences in contamination rates of OR attire in comparing nurses with cover garments and those without cover garments when worn in undesigned areas outside OR attire zones [8]. This suggested that the use of cover garments may help decrease the rates of garment contamination when wearing OR attire outside of restrictive areas. However, it remains undecided whether this could reduce the likelihood of patients developing SSI or PJIs in this setting.

Overall, the above-mentioned studies examined rates of contamination for scrub suits, and not how this impacted the outcomes for patients regarding SSIs or PJIs. Studies directly evaluating if OR attire worn outside the hospital and/or outside the restricted OR area and in relation to the incidence of SSIs/PJIs have yet to be published. Until conclusive evidence is brought forth, OR attire worn outside the operating room remains a potential source for surgical contamination.

REFERENCES


Authors: T. David Tarity, Rami Sorial, Oliver Enke, Rahul Sharma

QUESTION 8: Does the methicillin-resistant Staphylococcus aureus/epidermidis (MRSA/MRSE) colonization status of operating room (OR) personnel affect the hospital’s rate of surgical site infections/periprosthetic joint infections (SSIs/PJIs)?

RECOMMENDATION: Unknown. While OR personnel have previously been reported to contribute to environmental contamination, the literature provides insufficient data to establish strong correlations between OR staff colonization with MRSA/MRSE and a potential for increased infections in patients after orthopaedic procedures.

LEVEL OF EVIDENCE: Limited

DELEGATE VOTE: Agree: 90%, Disagree: 4%, Abstain: 6% (Super Majority, Strong Consensus)

RATIONAL

MRSA is a common source of nosocomial infections and has been reported as a potential cause of SSIs and PJIs leading to major complications [1,2]. The prevalence of healthcare worker MRSA colonization is estimated to be between 4.6 and 7.9% [3–5]. Some reports have even been published demonstrating higher incidences of up to 76% in special populations [6].

Nasal carriage of S. aureus is known to be a major risk factor for SSIs [7,8]. However, the transmission of MRSA from a staff member to a patient is believed to be an uncommon event with only 11 of 191 (5.8%) confirmed outbreaks occurring in this manner in one study [9] Nevertheless, 41% of nosocomial outbreaks (including all pathogens) transmitted by a contaminated staff member occurred in the OR [10].

A total of 10 articles relevant to orthopaedic staff MRSA colonization were included in this review [11–20]. The MRSA colonization rate of orthopaedic staff members in the literature averages at 7.8% (range 0 to 31%, median 4.2%) in 941 screened staff [12–18,20]. Of the studies reviewed, Portigliatti-Barbos et al. (31% penicillin-resistant S. aureus), Chang et al. (13.9% MRSA), Faibis et al. (2.3% MRSA) and Schwarzkopf et al. (1.5% MRSA) screened exclusively OR personnel [16–18,20].

Most identified publications did not investigate the infection rates of patients in the context of OR staff colonization with MRSA, thus the available data is limited. De Lucas-Villarrubia et al. [12] evaluated decolonized contaminated staff members and patients and added a broad spectrum antibiotic
to their surgical prophylaxis. By introducing these precautionary measures, the SSI rates dropped from 5.9 to 3.0%, the MRSA infection rates from 1.2 to 0.3% and the MRSA PJI rates from 9.7 to 1.0%. Mullen et al. [11] implemented a decolonization protocol of colonized staff and patients and reported a decreased rate of SSIs from 1.76 to 0.33%. Despite reporting the highest staff colonization rates (31% of theater staff), Portigliatti-Barbos et al. [16] showed a reduction of the already low SSI rates of 0.6 to 0% after a five-day decolonization course of intranasal mupirocin ointment for affected orthopaedic surgical team members. Dilogo et al. [13] did not identify any MRSA colonized orthopaedic staff members and concluded that there were no significant associations between MRSA staff colonizations and infections. We did not identify a relevant study investigating (MRSE) within the context of the question.

There is insufficient data available to establish a strong correlation between OR staff MRSA/MRSE colonization and the potential for increased infection rates in patients undergoing orthopaedic procedures. None of the studies re-evaluated the rate of staff colonization after decontamination protocols were initiated. The data sets across the included studies are heterogeneous which impedes pooled statistical analyses. Hence, a direct correlation between reduction in staff colonization and the reduction in MRSA–associated SSIs and PJIs cannot be confirmed, but is currently presumed.

The identified studies support current public health efforts to minimize nosocomial infections in the hospital setting with the focus on best possible patient outcomes. Additional studies are required to screen for MRSA colonization in staff members before and after decolonization, while monitoring the subsequent infection rates in patients.

REFERENCES


