Reduced neuroinflammation via astrocytes and neutrophils promotes regeneration after spinal cord injury in neonatal mice

Kazuki Kitade¹, Kazu Kobayakawa¹, Hirokazu Saiwai¹, Kazuya Yokota¹, Kenichi Kagawuchi¹, Kiyoshi Tanakado¹, Gentaro Ono¹, Jun Kishikawa¹, Takeshi Maeda², Yasuharu Nakashima¹

¹Department of orthopedic surgery, Kyushu University, Fukuoka, Japan, ²Department of orthopedic surgery, Spinal Injuries Center, Fukuoka, Japan

Email of Presenting Author: kitade.kazuki.194@m.kyushu-u.ac.jp

Disclosures: No Disclosure

INTRODUCTION: Neonatal spinal cord injury (SCI) shows better functional outcomes than adult SCI. Although the regenerative capability in the neonatal spinal cord may have cues in the treatment of adult SCI, the mechanism underlying neonatal spinal cord regeneration after SCI is unclear. We previously reported age-dependent variation in the pathogenesis of inflammation following SCI. Therefore, we explored differences in the pathogenesis of inflammation after SCI between neonatal and adult mice and their effects on axon regeneration and functional outcome.

METHODS: All experimental procedures were conducted in compliance with animal protocols approved by the Committee of Ethics on Animal Experimentation in the Faculty of Medicine, Kyushu University. We used wild-type C57/BL6N mice and Aldh1l1−EGFP transgenic mice (astrocyte-reporter line). We established spinal cord crush injury models by performing full compression for 2 seconds with forces (width: 100 μm) to the spinal cord of Th 10 segmental level. The spinal cord specimens and blood samples were examined by immunohistochemistry, flow cytometry, and quantitative PCR analyses. Statistical analyses compared the means of data between two groups. T-tests were performed using unpaired t tests. Analyses were conducted using the JMP PRO 16.0.0 software program.

RESULTS: Flow cytometry on the blood sample revealed that the expression of a chemokine receptor (CXCR2) and an adhesion molecule (β2 integrin) was significantly lower in neonatal spinal cord samples than in adult samples. Moreover, flow cytometry revealed that the spinal cord of Aldh1l1−EGFP mice revealed that neonatal astrocytes secrete significantly lower levels of chemokines that recruit circulating neutrophils (e.g., Cxcl1 and Cxcl2) after SCI compared to adult samples. Strikingly, these neonate-specific cellular properties seemed to be associated with less neutrophil infiltration into the injured spinal cord. This effect was followed by significantly lower expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) after SCI in the spinal cords of neonates than in those of adults. Consequently, significantly fewer apoptotic neurons than in those of adults (Fig. 1D). Consistently, significantly fewer axonal regeneration (Fig. 1F) were observed in neonates compared to adults, which led to a marked recovery of locomotor function as assessed by BMS system at 28 day after SCI (Neonate scored 6.5 whereas adult 2.5, n=6, P<0.0001).

DISCUSSION: Neonatal mice with SCI exhibited axon regeneration in the context of extremely low inflammation that is characterized by a lack of neutrophil infiltration. Since neutrophil-specific CXCR2-depleted adult mice with experimental autoimmune encephalomyelitis showed the infiltration of neutrophils into the spinal cord, neutrophil-free inflammation seen in this study could not be solely caused by the reduced expression of CXCR2. This fact emphasizes the significance of lower expression of β2 integrin which forms the adhesion molecules LFA-1 and MAC-1 when combined with CD11a and CD11b to undergo neutrophil infiltration into the spinal cord. Taken together, the neutrophil-free inflammation in the neonates of this study was due to the simultaneous lower expression of CXCR2 and β2 integrin. In addition to lack of astrocyte-derived chemokine release. Considering the fact that neutrophil infiltration has been observed to some extent after CNS injury in 9- and 10-day-old mice, the 2-day-old mice with SCI used in this study are an extremely optimal model for analyzing the mechanisms of successful suppression of neutrophil infiltration and subsequent inflammation.

SIGNIFICANCE/CLINICAL RELEVANCE: Our findings provide deeper insight into the role of astrocytes and neutrophils in neuroinflammation and axon regeneration in neonatal mice. Reproducing neonatal-like reduced inflammation in the adult spinal cord may lead to vigorous axon regeneration with favorable functional recovery.

REFERENCES:

Figure 1: (A) Histograms from flow cytometry showing the expression level of CXCR2 and β2 integrin in circulating neutrophils of neonates and adults. (B) A gating strategy for sorting EGFP⁺ astrocytes in the spinal cord of Aldh1l1−EGFP mice (left). mRNA expression levels of Cxcl1 and Cxcl2 at 12 h after SCI are shown (middle). The number of neutrophils per 1.0*10⁷ events detected by flow cytometry (n=53). (C) mRNA expression levels of Il-1β, Il-6, and Tnf-α at 12 h after SCI (n=8). (E) Intracellular cleaved caspase-3 with NeuN⁺ neurons in the adult spinal cord but not in neonates. (F) 5-HT⁺ axons in the neonatal and adult spinal cord at 3 days and 2 weeks after SCI. Asterisks: epicenter of the lesion. *P<0.05

ORS 2024 Annual Meeting Paper No. 1227