Androgen Treatment Exhibits A Protective Role Against Focal Erosions in TNF-Induced Inflammatory Arthritis in Mice

Kiana L. Chen1,2, Adelaide Weidner3, Olga I. Astapova4,5, Edward M. Schwarz1,2,6, and Homaira Rahimi1,2,7
1Department of Pathology, 2Center for Musculoskeletal Research, 3Department of Environmental Medicine, 4Department of Medicine, 5Division of Endocrinology and Metabolism, 6Department of Orthopedics, 7Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

Disclosures: The authors have no disclosures

INTRODUCTION: Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and bone erosion and is female predominant. The TNF-transgenic (TNF-Tg) murine model of RA develops inflammatory erosive arthritis and displays a sex difference in disease, with females having earlier onset and more severe disease than males (1). Studies suggest androgens provide a protective effect against joint disease and TNF-mediated bone erosion (2). We have previously shown that the removal of endogenous sex hormones in TNF-Tg males significantly worsens their inflammatory erosive disease. Here, we investigated whether treatment of TNF-Tg mice with exogenous androgen ameliorates erosive disease.

METHODS: All animal studies were approved by the University of Rochester Committee for Animal Resources within an AAALAC accredited vivarium. TNF-Tg male mice were orchiectomized followed by subcutaneous implantation of either 5α-dihydrotestosterone (DHT) or placebo pellet at 1-month old (n = 3/group). Pellets released 1.5mg of DHT or placebo for 60 days (0.025mg/day). Micro-computed tomography (μCT) scans of hindpaws were taken at 3-months old and compared with μCT data of same age intact TNF-Tg males and orchiectomized wildtype (WT) males (n = 4-6 paws/group). The total bone volumes (mm³) of the cuboid, talus, and navicular and lateral intermediate cuneiform were compared between all groups. The volumes of the periaricular metatarsals were compared between TNF-Tg groups. Paw deformation scores and weights were taken weekly from 1 to 3 months old. Same age sham TNF-Tg male weekly weights were compared between orchiectomized TNF-Tg groups. Serum and paws were obtained for analysis and histology. Values are reported as the mean ± standard deviation.

RESULTS: Placebo-treated orchiectomized TNF-Tg mice had significantly more bone volume loss than DHT-treated orchiectomized TNF-Tg mice and other cohorts in the cuboid (0.34 ± 0.03 Orchiectomized TNF-Tg + Placebo; 0.43 ± 0.02 Orchiectomized TNF-Tg + DHT; 0.43 ± 0.06 Intact TNF-Tg; 0.45 ± 0.05 Orchiectomized WT), talus (0.97 ± 0.09 Orchiectomized TNF-Tg + Placebo; 1.10 ±0.06 Orchiectomized TNF-Tg + DHT; 1.21 ± 0.07 Intact TNF-Tg; 1.12 ± 0.05 Orchiectomized WT), and navicular and lateral intermediate cuneiform (0.78 ± 0.04 Orchiectomized TNF-Tg + Placebo; 0.87 ± 0.03 Orchiectomized TNF-Tg + DHT; 0.94 ± 0.04 Intact TNF-Tg; 0.93 ± 0.04 Orchiectomized WT) (Fig 1B-D). Segmented hindpaw images of the TNF-Tg cohorts showed bone erosion in the periaricular regions of the metatarsals (Fig 1E-G). Placebo treated orchiectomized mice had less bone volume in the distal metatarsals than DHT-treated orchiectomized TNF-Tg mice and intact TNF-Tg mice (0.23 ± 0.05 Orchiectomized TNF-Tg + Placebo; 0.28 ± 0.07 Orchiectomized TNF-Tg + DHT; 0.27 ± 0.07 Intact TNF-Tg) (Fig 1H). Orchiectomized TNF-Tg mice with placebo had significantly higher mean deformation scores at 4 weeks post-surgery (p = 0.03) (Fig 2A). Orchiectomized TNF-Tg mice also gained significantly less weight than sham TNF-Tg mice by 6 weeks post-surgery (p = 0.03). DHT treatment of orchiectomized TNF-Tg mice resolves that weight loss over time (Fig 2B).

DISCUSSION: Androgen treated orchiectomized arthritic mice had significantly improved bone volumes, limiting bone erosion even in the presence of ongoing inflammation. Clinical measures of weight loss and arthritis also improve with androgen treatment. These findings suggest sex hormones have a relationship with the immune system in inflammatory-erosive disease that warrants further study. Histological analysis of the paws and osteoclastogenic cultures of bone marrow are ongoing to delineate the mechanism of androgen effects on inflammation.

CLINICAL RELEVANCE: This research investigates the influence of androgen on inflammatory bone erosion. This will provide further introspection and potential explanations into the sexual differences seen in rheumatoid arthritis and other autoimmune diseases.

ACKNOWLEDGEMENTS: NIH/NIAMS P30 AR061307, K08 AR067885, T32 AR053459, R01 AR56702, NIH/NICHD HD068373-04

Figure 1. DHT Decreases Bone Erosions in Orchiectomized TNF-Tg Mice. μCT imaged hindpaw bones were segmented to determine total bone volume (mm³) of the cuboid (A, red asterisk), talus (A, blue asterisk), and navicular and lateral intermediate cuneiform (A, green asterisk) for all groups (n = 4-6 paws/group). Orchiectomized TNF-Tg mice treated with placebo have significantly greater bone loss in the cuboid (B), talus (C), navicular and lateral intermediate cuneiform (D) compared to the other cohorts. Placebo treated orchiectomized TNF-Tg mice also had significantly less bone volume in the distal ends of the metatarsals that showed periarticular erosions reminiscent of erosions seen in RA patients (F, arrows; H). Orchiectomized mice treated with DHT had significantly greater bone volumes than orchiectomized mice treated with placebo, exhibiting that DHT treatment decreases bone erosion. Mid-hindpaw bone volume analysis was performed using a one-way ANOVA with Tukey’s multiple comparisons. Metatarsal bone volume analysis was performed using a one-way ANOVA with Fisher’s LSD test. * = p<0.05; ** = p<0.01; *** = p<0.001; **** = p<0.0001.

Figure 2. DHT-Treated Orchiectomized TNF-Tg Mice have Improved Clinical Measures of Disease. Orchiectomized mice treated with placebo and orchiectomized mice treated with DHT had weekly deformation scoring of their paws after surgery (n = 3 mice/cohoot) (A). There was a significant difference in the average deformation score at week 4 post-op, signifying that orchiectomized mice treated with placebo displayed paw inflammation earlier than mice treated with DHT. Orchiectomized TNF-Tg mice treated with placebo, orchiectomized TNF-Tg mice treated with DHT, and sham TNF-Tg mice were also weighed weekly after surgery. The weight change from the baseline week (week 0) was compared between cohorts (B). Orchiectomized mice has significantly less weight gain than sham TNF-Tg mice by week 6 post-op. DHT treatment of orchiectomized mice ameliorates this weight loss over time. Average deformation score analysis was performed with multiple unpaired t-tests. Weight analysis was performed with a two-way ANOVA with Tukey’s multiple comparisons. * = p<0.05, *** = p<0.001.