Magnesium-containing Implant Modulates the Characteristics of Distinct Mesenchymal Progenitors to Inhibit Fracture Callus Fibrosis in Long-term Bisphosphonate-pretreated Rats

Chang Liang1,2, Zheng Nianye3, Guo Jiaxin1,2, Yao Hao1,2, Zhang Yuantao1,2, Tong Wenxue1,2, Dai Bingyang1,2, Li Xu1,2, Xu Hongtao1,2, An Yuanming1,2, Xu Jiankun1,2, Qin Ling1,2

1Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR China. 2Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China. 3Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA (* Correspondence)

Email of Presenting Author: liangchang@cuhk.edu.hk

INTRODUCTION: Fracture callus fibrosis was found to be the key pathologic change in rats receiving long-term bisphosphonates (BPs) pre-treatment, which recapitulates the impaired fracture healing in atypical femoral fracture (AFF) patients with long-term BPs use clinically. Besides, dysfunction of specific mesenchymal progenitors has been demonstrated to play key roles in fibrosis-associated fractures, such as polytraumatic, radiation-associated, and diabetic fractures. Thus, the present study aims to investigate the anti-fibrotic effects of Mg-containing implants (MCI) in long-term BPs pretreatment-impaired femoral fracture healing in rats at single-cell resolution.

METHODS: In this work, we used single-cell transcriptome sequencing (scRNA-seq) to depict the cellular atlas of fracture callus cells (FCCs) at 4 and 12 weeks post-fracture in Ctrl, BP, and BP-Mg groups respectively. The anti-fibrosis effects of Mg-containing implants and the validation of sequencing results were conducted in vivo and in vitro by performing immunofluorescence, flow cytometry, differentiation assay, real-time PCR, etc.

RESULTS: We found that there were no significant differences in transcriptomes among Ctrl, BP, and BP-Mg groups at 4 weeks post-fracture, suggesting the relatively normal fracture healing process at the early stage in both BP and BP-Mg groups. However, as fracture healing progressed (12wpf), the expression of fibrotic markers, such as Col1a1, Col3a1, Fn1, Acta2, and Tgfb1, was dramatically upregulated in BPs-treated rats while decreased by implantation of MCI (Fig. A). At the cellular level, two subsets of mesenchymal progenitors were defined, one was Grem1+ CD105+ CD90+, and another was Prx1+ CD90+. Interestingly, Grem1+ mesenchymal progenitors were dramatically increased in the BP-Mg group at 12wpf (Fig. B), accompanied by activation of the chemokine signaling pathway. In vitro experiments demonstrated that Prx1+ FCCs possessed greater myofibrogenic differentiation potential, while Grem1+ FCCs possessed higher osteogenic differentiation potential. Furthermore, BPs pre-treatment augmented the myofibrogenic potential of both Grem1+ and Prx1+ mesenchymal progenitors. By comparison, the implantation of MCI alleviated the pro-fibrotic effects of BPs on both Grem1+ and Prx1+ FCCs, while rescuing the attenuated osteogenic potential of Grem1+ FCCs obtained from BPs-treated rats.

DISCUSSION: We demonstrated that MCI inhibited fracture callus fibrosis in long-term BPs-pretreated rats via differential modulation of Grem1+ and Prx1+ mesenchymal progenitors for the first time (Fig. C). Our study will shed new light on the potential development and application of Mg-containing devices in challenging musculoskeletal disorders associated with aberrant fibrosis.

SIGNIFICANCE/CLINICAL RELEVANCE: The present study explored the underlying mechanisms of long-term BP pretreatment-impaired fracture healing and the anti-fibrotic effects of Mg-containing intramedullary nails at single-cell level, highlighting the key roles of different mesenchymal progenitors in the aberrant fracture healing process. Our findings will push forward the potential development and application of Mg-containing devices in challenging musculoskeletal disorders associated with aberrant fibrosis, such as atypical femur fractures, radiation-associated fractures, and diabetic fractures.

ACKNOWLEDGEMENTS: This work was supported by General Research Funds (14121918 and 14173917) and Areas of Excellence (AoE/M-402/20).

Figure A: Validation of the expression of multiple fibrotic markers in callus of Ctrl, BP, and BP-Mg group at 12wpf by immunofluorescence. Red arrows indicated the center of the fibrosis region within the fracture gap. Scale bar = 200 μm.

Figure B: (Left panel) Validation of the Grem1+ Cd105+ FCCs in Ctrl, BP, BP-Mg groups at 12wpf by immunofluorescence. White arrowheads indicated Grem1+ Cd105+ mesenchymal progenitors. White dotted boxes indicated the ROI that was magnified. Scale bar = 100 μm. (Right panel) Quantitative analysis of the percentage of Grem1+ Cd105+ FCCs within the fibrocartilaginous area in fracture callus at 12wpf. Quantitative data was presented as mean ± SD. One-way ANOVA with Tukey’s multiple comparisons test was used to compare data between each group. Significant difference was defined as: *p < 0.05, **p < 0.01, and ***p < 0.001.

Figure C: The schematic diagram shows that MCI inhibited fracture callus fibrosis in long-term BPs-pretreated rats via differential modulation of Grem1+ and Prx1+ mesenchymal progenitors.