Post-traumatic osteoarthritis model in aged rats induces changes in tactile sensitivity and brain and joint remodeling

Jacob L. Griffith1, Pedro Valdes Hernandez2, Yenisel Cruz-Almeida2, Kyle D. Allen1,2

1J.Crayton Pruitt Family Department of Biomedical Engineering, 2Pain Research & Intervention Center of Excellence (PRICE), 3Department of Orthopedic and Sports Medicine, University of Florida, Gainesville, FL

Disclosures: J.L. Griffith: None. P.A. Valdes Hernandez: None. Y. Cruz-Almeida: None. K. Allen: 8; Associate Editor for Osteoarthritis and Cartilage. 9; Member of the LearnORS Committee - ORS Chair of the OARSI Finance Committee, Member of the Student Affairs Committee - BMES

INTRODUCTION: Osteoarthritis (OA) is a debilitating and painful joint disorder with a significant impact on patient’s lives. Preclinical models provide useful details regarding joint-level remodeling and pain-related behaviors with disease progression, but effects beyond the joint are poorly understood. One example of this limited understanding is the unknown role of the nervous system in OA progression. In patients with OA, brain remodeling of pain processing regions has been observed. However, specific mechanisms through which this brain remodeling occurs in OA are unknown, and brain changes in preclinical models of OA are weakly characterized. To address this limitation, the current study investigates joint remodeling, pain-related behavior, and brain remodeling in a surgical rodent model of post-traumatic osteoarthritis. Additionally, aging is an important confounding factor in brain remodeling due to its effect on neuroplasticity. Therefore, we used aged animals to account for the aging component. Here, we used age commonly utilized techniques such as histological analysis of the knee joint and longitudinal testing of tactile sensitivity behavior while adding in magnetic resonance imaging (MRI). This design allows us to evaluate both disease progression and the effects of early (6 weeks) and late stage (14 weeks) OA on brain remodeling in aged rats.

METHODS: Male and female Fischer 344 rats – 18-19 months of age at time of surgery – received either a skin incision (n= 6 male and n= 10 female) or medial meniscus transaction plus medial collateral ligament transaction (MMT+MCLT) (n= 5 male and n= 11 female) surgery. Tactile sensitivity behavioral testing was performed before surgery and 4-, 8-, 12-, and 16- weeks post-surgery. MRI scans were collected on a 11 T/40 cm horizontal magnet (Bruker) prior to surgery and 6- and 14- weeks post-surgery. Structural MRI’s were spatially registered to the Waxholm brain atlas. Using the predefined atlas, functional connectivity data were analyzed using linear mixed effects model (LME) to account for the aging component. Here, we used age commonly utilized techniques such as histological analysis of the knee joint and longitudinal testing of tactile sensitivity behavior while adding in magnetic resonance imaging (MRI). This design allows us to evaluate both disease progression and the effects of early (6 weeks) and late stage (14 weeks) OA on brain remodeling in aged rats.

RESULTS: In MMT+MCLT animals, there was a trend of decreased 50% withdrawal threshold compared to skin incision controls at 4-8, 12-, and 16- weeks post-surgery (Fig. 1). Functional connectivity changes are visualized in Fig. 2A and 2E for females and males, respectively. For females, there was higher functional connectivity for the MMT+MCLT group compared to skin incision group at week 6 between the primary somatosensory cortex hindlimb and mediodorsal nuclei of the thalamus (p=0.016) (Fig. 2B) and the central nucleus of the amygdala (p=0.0318) (Fig. 2C). At week 14 we also saw significantly higher connectivity for the female MMT+MCLT animals compared to the female skin incision group for the connection between the left retrosplenial cortex and the left primary somatosensory cortex trunk (p=0.022) (Fig. 2D). Whereas, for males, there was lower functional connectivity in the MMT+MCLT animals compared to skin incision control at week 14 for the connections between the left somatosensory cortex hindlimb and the left retrosplenial cortex (p<0.004) (Fig. 2F), left medial nucleus of the amygdala (p=0.023) (Fig. 2G), and left anterior cingulate cortex (p=0.045) (Fig. 2H).

DISCUSSION: Characterizing brain changes in OA progression in preclinical models is important for future work to help identify mechanisms through which brain remodeling is occurring in patients. In this study, we show changes in tactile sensitivity, functional connectivity, and joint-level remodeling. Our functional connectivity analyses focused on regions related to 1) sensory input (somatosensory cortex and thalamus), 2) sensory perception (somatosensory cortex and retrosplinal cortex), 3) nociception (somatosensory cortex and amygdala), and 4) the emotional aspect of pain (somatosensory cortex, anterior cingulate cortex, and periaqueductal gray). These results indicate that circuits involved in sensory and nociceptive processing are altered with this model of post-traumatic OA. However, more analysis is needed to determine if any strong correlations exist between functional connectivity, tactile sensitivity, and joint remodeling. Additional work will also investigate motor and cognitive effects of OA in preclinical rodent models using MRI, gait analysis, and cognitive behavior assays, etc to understand the disconnect between pain processing and pain-related behavior. Additional work is planned to investigate MRI data related to cognition and motor control paired with cognitive behavior and gait analysis.

SIGNIFICANCE/CLINICAL RELEVANCE: This study establishes a foundation for understanding the relationship between joint remodeling, brain remodeling and pain related behavior in an aging rodent model of OA. By understanding this relationship in preclinical models, the effects of OA progression on the brain can be better characterized.

ORS 2024 Annual Meeting Paper No. 166