Evaluating *Staphylococcus aureus* infection dynamics in a rat joint PJI model

Amita Sekar1,2, Peyton Tierney1, Madeline McCanne1, Parker Jones1, Yingfang Fan1,2, Devika Kannambadi1, Keita Fujino1, Orhun Muratoglu1,2, Ebru Oral1,2

1Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA
2Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA

Email: asekar2@mgh.harvard.edu

Disclosures: Amita Sekar (N), Peyton Tierney (N), Madeline McCanne (N), Parker Jones (N) Yingfang Fan (N) Devika Dutta Kannambadi (N), Keita Fujino (N) Orhun Muratoglu (Exactech, Stryker, Corin, Mako, Iconacy, Renovis, ConforMIS, Meril Healthcare, Kyocera, Arthrex, Cerament, Alchimist, Cambridge Polymer Group, Orthopedic Technology Group), Ebru Oral (1-Corin, Iconacy, Renovis, Arthrex, ConforMIS, Meril Healthcare, Exactech; 3B – WL Gore & Assoc; 7/8 – JBJR; 9 – SFB, ISTA)

INTRODUCTION: Periprosthetic joint infections are a growing problem linked predominantly to *Staphylococcus aureus*
[4]. Infection severity is increased by biofilm formation that aids in evading host immune responses and resisting antibiotic treatments
[2]. Clinically, biofilms have been strongly correlated to poor eradication and PJI recurrence, further emphasizing the need to determine in-vivo biofilm properties
[3]. Multiple in vivo animal models have been developed to simulate PJI and study treatments. However, the nature of biofilm growth, microbial physiology, and antibiotic susceptibility profiles in PJI are not well understood. Previously, we developed a rat model of implant-associated *S. aureus* joint infection
[6]. In this present study, we aim to understand infection dynamics in our joint model using a gentamicin-susceptible ‘low-risk’ strain and a gentamicin-resistant ‘high-risk’ strain of *S. aureus*.

METHODS: Control strain Staphylococcus ATCC 12600 (Methicillin-susceptible SA) and clinical strain L1101 (Methicillin-resistant SA) were used to establish a ‘low-risk’ and ‘high-risk’ PJI, respectively. Male Sprague Dawley rats (n=18) were assigned to ‘low-risk’ (n=3 per day) and ‘high-risk’ (n=3 per day) infection groups, and 10^5 CFU of bacteria were inoculated into the tibia before being implanted with stainless steel screws. The screws and peri-implant tissue (femoral and tibial) were harvested at postoperative day (POD) 1, 3, and 7 to determine bacterial viability, gentamicin susceptibility, and bacterial gene expression. The screws and tissue samples were sonicated (40 mins) and homogenized respectively in PBS, and bacterial viability was determined using the plate count method. The gentamicin susceptibility of screw-adherent and tissue-colonized bacteria was evaluated by exposing the samples to a range of gentamicin concentrations (0, 10, 50, 100, 300, 500 µg/mL) and observing viability using the plate count method. Samples from no infection control (NIC) rats served as controls. Subsequently, RNA was extracted from the peri-implant tissues, and the relative gene expression profiles of bacterial genes associated with stress response (vraR), biofilm production (icaA, icaD), and adhesion (ebpS) were determined using the ΔΔCq method.

RESULTS SECTION: In the ‘low-risk’ (MSSA) infection model, the screw-adherent bacterial viability was consistent (~10^9 CFU/mL) for POD 1, 3, and 7. In contrast, in the ‘high-risk’ (MRSA) infection model, high bacterial viability (~10^7 CFU/mL) was observed only at POD 1, which was reduced and stabilized (~10^5 CFU/mL) by POD 7. The viable bacteria count in femoral and tibial tissue was consistently high (10^5–10^7 CFU/mg) for the entire period of the study (Fig 1). The viability of screw-adhered MSSA was slightly affected at a significantly low concentration of gentamicin (10µg/mL, ~1.25 log reduction) when compared to MRSA, for which viability was not affected even at the highest concentration of gentamicin tested (>500µg/mL) across all time points tested. On the other hand, the viability of tissue-colonized MSSA was significantly affected (>3log reduction) at a lower gentamicin concentration (50µg/mL) when compared to tissue-colonized MRSA from POD 1 and 3, which showed high viability across the gentamicin concentration range tested until POD 7 where the viability was reduced (~3log reduction) in the presence 300µg/mL gentamicin. Gene expression analysis for ‘low-risk’ MSSA showed a steady increasing expression for all genes (+1-3log fold change) over seven days. For the ‘high-risk’ MRSA, the relative gene expression was significantly altered at POD7 (ebpS and icaD) and slightly altered (vraR and icaA, <0.5 log fold change) at POD 1, 3 and 7 (Fig 2).

DISCUSSION: We have established an in-vivo ‘low-risk’ and ‘high-risk’ *S. aureus* PJI model. The study revealed biofilm growth dynamics for MSSA and MRSA with comparable viable bacteria recovered from both the implant surface and surrounding tissue, indicating no preferential colonization. However, there was a distinct difference in the gentamicin susceptibility profiles of screw-adhered bacteria vs. tissue-colonized bacteria, which strongly suggested the crucial role of biofilm properties and the environment (implant vs. tissue) in determining treatment outcomes. The preliminary gene expression data also revealed marked differences in the MSSA and MRSA’s response to the host environment, emphasizing the importance of having infection risk and severity assessment as tools to aid treatment decisions.

SIGNIFICANCE/CLINICAL RELEVANCE: Understanding the infection characteristics using robust preclinical models will aid in defining realistic ranges of antibacterial activity and in devising effective treatment strategies against PJI.

ACKNOWLEDGEMENTS: This work was supported by the National Institutes of Health Grant R01AR077023. We thank Dr. Kerry Laplante lab for providing the MRSA strain.

1. [Fig 1](#). The viability of tissue-colonized and implant-adherent MSSA and MRSA for POD1, 3, and 7. Error bars represent standard deviation (n=3).

2. [Fig 2](#). Relative gene expression of bacterial genes *vraR, icaA, icaD* and *ebpS* of tissue colonized MSSA and MRSA at POD1, 3 and 7. The ΔΔCq was calculated by normalizing the expression to housekeeping gene *16sRNA* and to planktonic *S. aureus* gene expression to determine the log fold change. The error bars represent standard deviation (n=3). Wilcoxon rank sum test was performed and *p* indicates p-value ≤ 0.1.

ORS 2024 Annual Meeting Paper No. 1966