Blocking CaV1.2 function by verapamill mitigates tendinopathy and promotes scarless healing of injured Achilles tendon in mice

Haiyin Li1,2, Brendan F. Boyce1,2, Chike Cao1,2

1Center for Musculoskeletal Research, 2Department of Orthopaedics, 3Department of Pathology, University of Rochester Medical Center, Rochester, NY

ChiKe_Cao@urmc.Rochester.edu

Disclosures: The authors have nothing to disclose.

Introduction: Tensile-bearing Achilles tendons are highly prone to acute injury and chronic degeneration known as tendinopathy, a disease often associated with pain and disability. However, there is great unmet clinical need for novel therapeutic options as aberrant tendon healing such as scar formation and hypertrophic ossification compromises tendon function and structure, whereas current standard of care for Achilles tendinopathy does not result in effective long-term functional recovery. The pathogenic mechanisms of Achilles tendinopathy are largely unknown, which prevents the development of new therapeutic strategies for tendinopathy. We recently demonstrated that CaV1.2, an L-type voltage-gated Ca2+ channel is dynamically expressed in tendon and regulates tendon formation during development and postnatal growth. Interestingly, our clinical study using TriNetX Analytics Network reveals bidirectional association between hypertension and Achilles tendinopathy, and the decreased incidence of Achilles tendinopathy in hypertensive patients who were on calcium channel blockers (CCBs) compared with those on other hypertension medication (data unpublished yet). Given the fact that dysregulation of CaV1.2 expression and activity contribute to hypertension, we hypothesized that aberrant CaV1.2 function is a shared pathological mechanism which also underlies Achilles tendinopathy; blocking CaV1.2 function by CCBs mitigates this disease development. To test this hypothesis, we examined CaV1.2 expression in Achilles tendon in response to injury and tested the effect of upregulated Ca2+ signaling using CaV1.2 transgenic mouse models on Achilles tendinopathy development and evaluated the efficacy of L-type specific CCB verapamil on Achilles tendinopathy in an injury-induced mouse model.

Methods: All animal studies were approved by the University Committee for Animal Resources. Mice: This study used two CaV1.2 transgenic lines (which either carry a wildtype or a G406R gain-of-function CaV1.2 mutant cDNA knocked into the Rosa26 locus with an upstream floxed stop codon; expression of the conditional CaV1.21.2 or CaV1.2G406R allele was achieved by crossing with the ScxCre mouse, CaV1.22med (which carries a lacZ reporter with a nuclear localization signal under the promoter of CaV1.2 gene) and C57BL/6 mice. Both male and female mice were used for analysis. Partial unilateral Achilles tendon section (PUAT): 10-week-old CaV1.21.2med or C57BL/6 mice were subjected to PUAT in the left leg. To investigate the effect of injury on CaV1.2 expression, tissues were collected from CaV1.21.2med mice 7 days (D7) post-surgery, with the right uninjured Achilles tendon serving as the contralateral control. To evaluate the efficacy of CCB verapamil on mitigating the development of Achilles tendinopathy, PUAT C57BL/6 mice were divided into two groups: vehicle (DMSO diluted 1:3 in 1xPBS) vs verapamil (15 mg/kg/day, i.p.) treatments starting on the day of surgery for 42 days. Tissues were collected for analysis at D42 post-surgery. X-ray staining: Visualization of lacZ expression was done by whole-mount x-gal staining, followed by frozen section (10 µm), counter-stained with nuclear fast red. µCT analysis: To monitor heterotopic bone formation upon injury, µCT 3D images were acquired using a Scanco VivaCT 40 instrument, either in vivo longitudinally or ex vivo following tissue harvest. Histological analysis: Decalcified paraffin sections (5 µm) were stained with Alcian Blue, Hematoxylin/Orange G (ABO).

Results: Acute injury induces CaV1.2 re-expression in Achilles tendon. We found that PUAT of 10-week-old CaV1.21.2med reporter mice induces substantial CaV1.2 re-expression, supported by a significant increase of x-gal-stained tendon cells around the injury site at D7 post-injury, in striking contrast with the uninjured adult Achilles tendon, which has very limited CaV1.2 expression in tenocytes (Fig. 1). Tendinopathy (including ectopic bone) is developed in Achilles tendons of Scx-CaV1.21.2med and Scx-CaV1.2G406R mice. Longitudinal µCT analysis shows that CaV1.21.2med mice develop ectopic bone in Achilles tendons with age in both male and female mice with 100% penetrance in the absence of injury. This phenotype is significantly accelerated in Scx-CaV1.21.2med mice with early onset (~2 months old) and increased ectopic bone formation. Ectopic bone progresses in Achilles tendons with age in both transgenic mouse models. ABO staining shows that tendinopathy in Achilles tendon is accompanied by chondrocyte (trans)differentiation in the middle tendon substance as well as in the lesion of ectopic bone. PUAT induces Achilles tendinopathy and ectopic bone formation.

We found PUAT of 10-week-old C57BL/6 mice induces Achilles tendinopathy with ectopic bone formation visualized by µCT analysis. Histological ABO reveals scar tissue formation in the gap of the injury site while neighboring intact tendons undergo intense chondrocyte transdifferentiation and extracellular matrix (ECM) degeneration (Fig. 2A-C). CCB verapamil mitigates tendinopathy and promotes scarless healing of PUAT-injured Achilles tendon in C57BL/6 mice. Achilles tendons of verapamil-treated C57BL/6 mice D42 post PUAT show no obvious gap in the injured site, compared with those of vehicle-treated mice (Fig. 2A & 2D). µCT analysis reveals reduced ectopic bone formation in the injured Achilles tendons when mice are subjected to verapamil treatment (1 out of 4 mice forms ectopic bone vs 4 out 4 in vehicle treated group) (Fig. 2B & 2E). ABO staining further revealed that verapamil promotes scarless healing with a better organized ECM matrix in the injury site (more glycosaminoglycan composition in ECM instead of scar matrix) and intact neighboring tissue without obvious ECM degradation, although chondrocyte transdifferentiation is also initiated.

Discussion: In this study, using CaV1.21.2med reporter mice we found that CaV1.2 expression is upregulated early in response to inflammation upon PUAT. We also observed that PUAT induces Achilles tendinopathy with scar formation, neighboring tendon tissue degeneration, and heterotopic bone formation in wild-type mice. These data provide a rational linkage among high CaV1.2 expression, injury-induced inflammation, and Achilles tendinopathy. Consistently, our transgenic mouse models demonstrated that maintaining high expression of CaV1.2WT or CaV1.2G406R mutant channel in tendon is sufficient to induce Achilles tendinopathy, providing a proof-of-concept that aberrant CaV1.2 expression and activity is implicated in tendinopathy development. Furthermore, pilot data showed that blocking CaV1.2 activity with verapamil mitigates injury-induced Achilles tendinopathy progression and promotes scarless tendon healing, in line with data from our clinical study demonstrating CCBs taken by hypertensive patients reduce the incidence of Achilles tendinopathy.

Clinical Significance: Our study identifies a novel role of CaV1.2 channel and its mediated Ca2+ signaling which underlies the pathogenesis of Achilles tendinopathy and the efficacy of CCB verapamil to alleviate the progression of Achilles tendinopathy. These data provide a scientific rationale for repurposing the use of FDA-approved generic CCBs to treat or prevent Achilles tendinopathy.

References:

1. Li H, Korcari A, Ciuffo D, et al. Increased Ca(2+) signaling through CaV(1.2) induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties. Faseb. J. 2023;37(7):e23007.


ORS 2024 Annual Meeting Paper No. 2323