Unveiling surface Tumor-Associated Antigens across Diverse Immune Scenarios for Osteosarcoma

Chien-Wei Lee1, Yu-Fan Wang2, Shekhar-madhukar KUMTA2, Oscar K. Lee1,3,4

1Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, 2Department of Orthopaedics and Traumatology, the Chinese University of Hong Kong, 3Department of Orthopedics, China Medical University Hospital, 4Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taiwan

oscarlee9203@gmail.com

Disclosures: To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

INTRODUCTION: Tumor development and drug resistance are intricately influenced by the tumor immune microenvironment and tumor-associated antigens (TAAs). However, the identification of universally applicable TAAs across diverse immune scenarios, named uiTAAs, is a challenge, attributed to immune-related biases in the cancer transcriptome.

METHODS: To address this challenge, we introduce a Cell-Surface Antigen Targeting (CSAT) system that integrates machine learning techniques to identify TAAs. Applied to osteosarcoma (OS), a tumor thriving within an immune-rich bone marrow microenvironment, we employed the CSAT system on 73 human primary OS transcriptomes. Clinical information and RNA-seq counts of 73 primary osteosarcoma patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database.

RESULTS SECTION: This approach yielded 153 potential surface uiTAAs universally relevant across varying immune infiltration levels. Bioinformatics analysis highlighted their association with immune systems and G-protein-coupled receptors. Literature scrutiny revealed that these CSAT findings were predominantly assessed in cancer studies, with a subset evaluated in OS contexts. From these, 26 surface TAAs (CD34, CXCX4, KDR, GGT1, ITGAM, CD68, CD86, CXCL1, CD163, TNFRSF9, HAVCR2, CSF2RA, IL21R, CDH1, SHP5, IFNAR2, CX3CL1, PAFAR, FLT4, CASR, CXADR, LPL, and ITGB4) emerged as high-priority therapeutic targets, with 23% (KDR, CSF3R, CSF1R, CSF2RA, IFNAR2, and FLT4) currently under investigation in ongoing OS clinical trials, underscoring CSAT’s accuracy and adaptability. Moreover, external datasets confirmed the heightened expression of selected uiTAAs in OS patients and cell lines. Notably, multivariate analysis showcased a significant correlation of all 153 uiTAAs with OS.

DISCUSSION: These discoveries hold implications for enhancing comprehension and treatment strategies in OS and potentially other malignancies.

SIGNIFICANCE/CLINICAL RELEVANCE: Our CSAT system effectively identifies potential surface uiTAAs, offering prospects as OS diagnostic markers and for immunotherapeutic interventions.

REFERENCES: NA

ACKNOWLEDGEMENTS: This work was supported by the National Science and Technology Council, Taiwan (Reference No. 111-2320-B-039-070-MY3) and China Medical University Hospital (EXO-113-004; EXO-113-005; DMR-121-147; DMR-112-220). Experiments and data analysis were performed in part through the use of the Medical Research Core Facilities Center, Office of Research & Development at China medical university, Taichung, Taiwan, R.O.C.

IMAGES AND TABLES: ORS 2024 Annual Meeting Paper No. 237