Association between power Doppler ultrasonography signals and chronic pain after total knee arthroplasty – a longitudinal study

Natsuki Sugimura1, Koji Aso1, Hiroyuki Wada1, Masashi Izumi1, Masahiko Ikeuchi1
1Department of Orthopedic Surgery, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
Email: Sugimura.n@kochi-u.ac.jp

Disclosures: The authors declare that they have no competing interests.

INTRODUCTION:
Total knee arthroplasty (TKA) is an established intervention for knee osteoarthritis (OA) pain. However, a significant subset of patients experience chronic post-surgical pain (CPSP) post-TKA, highlighting the need for further research into its underlying causes. Current understanding points to several factors including preoperative pain, gender, and postoperative alignment. Synovitis, a notable pain contributor in osteoarthritis, has also been identified post-TKA. Current evidence on postoperative synovitis on MRI and its relationship to pain is sparse. This study aims to longitudinally assess the relationship between post-TKA CPSP and synovitis, while also evaluating potential preoperative factors contributing to long-term CPSP.

METHODS:
This prospective longitudinal study examined the relationship between post-TKA pain and its determinants, with an emphasis on synovitis, over a one- or two-year postoperative period. Patients from Kochi University Hospital who underwent TKA between September 2020 and October 2021 were recruited. Inclusion criteria encompassed TKA patients with OA diagnosis, while exclusions pertained to infections, malalignment, and other causes of limb pain. Demographic data such as age, sex, BMI, diabetes history, and patient-reported outcomes (PROMS) like WOMAC and VAS for pain were gathered pre- and post-surgery. Synovitis assessment utilized the total PD score, derived from the power Doppler ultrasonography grade (Fig.1) across 15 knee areas (Fig.2). MRI evaluations employed the MOAKS scoring system for synovitis, and radiographs pre- and post-surgery assessed alignment. All surgical procedures were standardized, performed by seasoned surgeons. The WOMAC pain subscale and total PD score at one and two years post-TKA were used as dependent factors to ascertain the causes of pain and synovitis at the respective time points. Initial associations were identified using univariate linear regression, followed by a stepwise multivariate linear regression analysis.

RESULTS:
We assessed 49 knees in 42 patients (Female/Male: 31/11) with an average age of 73.1 (SD 6.7). Preoperative, six-month, one-year, and two-year postoperative total PD scores were 4.1(2.9), 6.2(5.1), 4.5(4.3), and 3.2(3.1), respectively. Univariate linear regression showed significant associations of one-year WOMAC pain subscale with postoperative WOMAC pain subscale, CRP level three month, one-year total PD score, exhibiting an adjusted R² of 0.284.

DISCUSSION:
Pain experienced at one and two years post-TKA correlated with total PD scores during the corresponding periods in multivariate linear regression analysis. These findings corroborate prior studies postulating a link between post-TKA synovitis and CPSP. While the total PD score increased post-TKA, it was ameliorated by the second year, albeit residuals persisted. The two-year total PD score correlated with the preoperative score, but the one-year score did not. This suggests that TKA-induced synovitis resolves by the second year, but individual predispositions linger. Study limitations include a modest patient cohort, a brief follow-up duration, and the omission of confounding factors such as the central sensitization inventory or the catastrophizing scale, which influence CPSP.

SIGNIFICANCE/CLINICAL RELEVANCE:
This study elucidates the link between post-TKA synovitis and chronic pain, offering insights for enhanced patient care. By identifying preoperative predictors and post-TKA synovitis trends, clinicians can optimize interventions and improve postoperative outcomes.