The phenotype and fate of monocyte-derived and tissue-resident synovial macrophages is modulated by injury and obesity in osteoarthritis

Natalia S. Harasymowicz1,2,3, Zainab Harissa1,2, Neda Rashidi1,2, Kristin Lenz1,2, Ruhang Tang1,2, Farshid Guilak1,2

1Washington University, St. Louis, MO, USA; 2Shriners Hospitals for Children – St. Louis, MO, USA, 3University of Utah, Salt Lake City, UT, USA

Email: n.harasymowicz@gmail.com

Disclosures: NSH (Agathos - 1), ZH (none), NR (none), KL (none), RT (Agathos - 1), FG (Cytex – 3A, 4, Agathos - 1)

INTRODUCTION: Immune cells are not only the central component of the body’s defense mechanisms but also contribute to organ development and adult tissues’ homeostasis. Macrophages are the main immune cell population found in synovium and other musculoskeletal tissues, playing a crucial role in maintaining tissue homeostasis as well as inflammation processes occurring in obesity and osteoarthritis (OA). However, the precise contribution of macrophages in the OA disease sequence is still unclear, with recent challenges to the simplified dogma of either M1/M2 macrophage polarization in the synovium. Studies analyzing macrophage subtypes in rheumatoid arthritis (RA) and OA have shown the presence of more defined populations both in mice and humans1,2. However, the origin, phenotype, and spatial localization of macrophages within joint tissues during the progression of DMM/innjury and obesity-induced OA have not been well characterized. Here, using multicolor flow cytometry, immunofluorescent labeling, and transgenic mouse models, we analyzed the more defined sequence of events during the progression of OA and obesity.

METHODS: All animal procedures were approved by the IACUC. Wild-type C57BL/6J and CCR2-GFP mice strains were used. RosaTdT were crossed with either LysoTracker Red, Lyve1Cre, or Cx3CR1CreERT2 mice (Jackson Laboratories). Four-week-old mice were fed either a control (10% kcal fat) or high-fat diet (HFD, 60% kcal fat) (Fig.1A). At 16 weeks of age, mice underwent surgical destabilization of the medial meniscus (DMM) on the left knee to induce post-traumatic OA. Two groups were studied. One group was injected intra-articularly with collagenase digestion. Synovial macrophages were analyzed by multicolor flow cytometry. Knee joints were cryopreserved, cryotome cut, immunofluorescently labeled, and imaged by confocal microscopy. Statistical analysis was performed using 2-way ANOVA with Bonferroni correction at p<0.05.

RESULTS: Our previous scRNA-seq analysis revealed the presence of multiple populations of macrophages in the synovial capsule with unique gene expression profiles. Here, we confirmed the presence of four main macrophage populations based on their CCR2, MHCII, and LYVE1 expression, namely CCR2-MHCII-LYVE1 [CCR2-MHCII], CCR2-MHCII-LYVE1 [CCR2-MHCII], CCR2-MHCII-LYVE1 [LYVE1-MHCII], and CCR2-MHCII-LYVE1 [LYVE1-MHCII] (Fig.1B,C). We illustrated that both injury and obesity significantly modulate the content and distribution of those populations. For instance, CCR2-MHCII macrophages, that reside in the sublining area of the synovium, show an increase in content at three days post-injury, which is significantly more pronounced in obese mice (Fig.2B, 3B). Their presence greatly diminishes at 12 weeks post-injury compared to other populations, with a remaining trend towards higher content in obese mice. The content of synovial lining macrophages defined by LYVE1-MHCII expression significantly decreases in the first three days post-injury and is successfully restored in mice fed the control diet. However, obese mice failed to restore their numbers and synovial lining localization after 12 weeks post-injury. Finally, our lineage-tracing model utilizing CX3CR1-TdT (TdTTomato) (Fig.2C, D and Fig. 3C, D) has shown that at three days post-injury there is an increased LysoTracker Red fluorescence. Their LysoTracker Red-positive, at 12 weeks post-injury, their presence diminishes, and the majority of TdT-positive cells are defined by LYVE1 expression.

DISCUSSION: Our study demonstrates the presence, spatial location, and changes in the content of multiple populations of macrophages in the synovial joint during the progression of obesity and injury-induced OA. We characterized four distinct populations of macrophages in the synovium with unique localization and function. Interestingly, by utilizing the CX3CR1-TdT lineage-tracing model, we showed that in the initial phase after injury, the majority of synovial macrophages are derived from circulating monocytes and co-express TdT and CCR2. These cells are known to contribute to inflammation, be short-lived, and disappear from tissues within a couple of days. Twelve weeks post-injury, the remaining TdT-positive cells mainly express LYVE1. These results suggest that LYVE1 cells most likely represent self-renewing, yolk sac-derived tissue-resident macrophages in the synovium. In this study, we also validated a distinctive sequence of macrophages’ contribution during the progression of OA that is significantly disturbed in obese animals. Our and other previous studies have shown that obese mice display a significantly higher predisposition to joint damage after DMM. Results presented here indicate that obese mice have a significantly higher influx of monocyte-derived CCR2-MHCII macrophages in the initial phase after injury and additionally fail to restore the protective barrier created by LYVE1-MHCII synovial lining macrophages at 12 weeks post-injury. These data suggest the important contribution of different macrophage populations in the progression of OA. Our findings also emphasize the need for a more in-depth understanding of the impact of macrophages on OA progression.

SIGNIFICANCE: The findings of this study further our understanding of the role of different populations of macrophages in synovium and provide potential targets for future OA therapies.

ACKNOWLEDGMENTS: Supported by grants from the NIH.


ORS 2024 Annual Meeting Paper No. 327