Comparison of Healthy and Osteoarthritic Human Meniscus-derived Matrix Scaffolds for Meniscus Repair
Sam Firoozii,1 David E. Attiarani,1 Samuel S. Wellman1, Annunziato Amendolà1, Amy L. McNulty1,2
1Duke University School of Medicine, Durham, NC; 2Duke University, Durham, NC
saman.firoozii@duke.edu

Disclosures: SM (N), DEA (N), SSW (1.3b,7a-Total Joint Orthopedics; 2-Zimmer-Biomet; 4-Joint Development; 5-Stryker, Deup Synthes, Zimmer-Biomet, Smith & Nephew, Medacta; 8-Journal of Arthroplasty), AA (1-Arthrex, Smith &Nephew; 4-Micha, Rubber City Bracing, Bone Solutions; 5-Stryker; 7b-Wolter Kluwer, Springer; 9-AAOS). ALM (6-JRF Ortho, 8-Connective Tissue Research)

INTRODUCTION: The meniscus is frequently injured due to sports injuries and age-related degeneration (1,2). Meniscus tissue engineering is a promising approach to replace lost and/or damaged meniscus tissue. Meniscus-derived matrix (MDM) scaffolds contain biological cues that can enhance cell infiltration, remodeling, and regeneration of injured menisic tissue (3,4). MDM can be isolated from allogeneic or xenogeneic menisic tissues; however, similarity of the composition of xenogeneic scaffolds and availability of healthy human menisic tissue remains challenging. On the other hand, there is a large abundance of human osteoarthritic menisic (5). Therefore, the objectives of this study were to generate and compare healthy (H) and osteoarthritic (OA) MDM scaffolds to assess \textit{in vitro} meniscus cellular responses and integrative meniscus repair using an \textit{ex vivo} meniscus repair repair system.

METHODS: Scaffold fabrication: Healthy medial menisic allografts (N=10) from 12-30 year old donors were provided by JRF Ortho and surgical waste OA menisic tissues from 54-81 year old joint replacement patients (N=30) were collected using an IRB approved waste protocol and frozen at \(-80\)C. Fig. 1 shows the methods used for fabricating healthy (H) and OA scaffolds (3,7). \textit{In vitro} cellular response: Human menisic fibrochondrocytes (hMFCs) were enzymatically isolated from fresh surgical waste OA menisic (N=3 pooled) and vacuum seeded onto healthy and OA MDM scaffolds at 1.32x10^6 cells/scaffold (3,4,8). Cell viability was measured on days 3 and 7 by Live/Dead staining (n=3). Proliferation was quantified on days 4 and 14 by Edu staining (n=3). At days 1, 4, 7, and 14, MDM scaffolds were digested in papain for biochemical assessments (n=3) (3). \textit{Ex vivo} meniscus repair model: Tissue repair model explants (8mm diameter) were harvested along the centerline of fresh OA human menisic and then cut to a uniform thickness of 2 mm (Fig. 3A). A 3 mm diameter inner core was removed from the explant to simulate a full-thickness defect. For control samples (Meniscus), the inner core was immediately returned to the defect (Fig. 3B). For the experimental groups (scaffold + menisic), the defect was filled with H (Fig. 3C) or OA (Fig. 3D) MDM scaffolds. After 28 days, push-out testing was used to determine the integrative shear strength of repair (n=18). The MDM scaffolds were digested in papain and biochemical assessments (n=18) were performed. Statistical analysis was performed using an ANOVA followed by Sidak’s multiple comparisons post-hoc test and for \textit{ex vivo} experiments t-tests were performed. p<0.05 was considered statistically significant.

RESULTS: Human MFCs showed more than 90% viability within both the H and OA MDM scaffolds at days 3 and 7 with no detectable differences between the scaffolds. Higher proliferation of hMFCs was observed at day 4 than day 14 (p<0.05) for both the H and OA MDM scaffolds but no difference was observed between the H and OA scaffolds (Fig. 2A). DNA content significantly increased over 14 days (Fig. 2B, p<0.05), sGAG content increased from days 7 to 14 (p<0.05), and collagen content remained stable in both H and OA scaffolds. Interestingly, both DNA (Fig. 2B) and collagen content were higher in the OA than the H scaffolds (p<0.05). After 28 days in the ex \textit{vivo} meniscus repair model, H and OA MDM scaffolds contained similar amounts of DNA, sGAG, and collagen and were ~3-fold lower than meniscus tissue controls (Fig. 4 A-C). However, both the H and OA MDM scaffolds showed similar repair strength to meniscus tissue controls (Fig. 4D). Histological analysis revealed that the H and OA scaffolds had integrated with the surrounding meniscus tissue (Fig. 4E).

DISCUSSION: Our study compared scaffolds derived from both healthy and OA menisics, while prior studies have used menisics from OA patients (9), cadavers (10), or both (11) as a tissue source. We hypothesized that healthy MDM scaffolds, which were also from younger donors, would contain biological cues that would lead to improved cellular responses and integrative repair. However, we found that OA scaffolds showed more favorable cellular growth and collagen content over 14 days in \textit{vivo} and \textit{ex vivo} studies. Interestingly, while \textit{in vitro} cell viability and proliferation at the measured time points were not detectably different between the healthy and OA scaffolds, the overall DNA content and collagen content were both significantly increased in the OA scaffolds, suggesting that more hMFCs were able to attach to the OA scaffolds at the time of seeding and produce more collagen throughout culture. However, in the \textit{ex vivo} model, where the hMFCs grew into the scaffolds from the surrounding meniscus tissue, there were no detectable differences in the scaffolds after 28 days. Overall, we found that both healthy and OA MDM scaffolds had similar \textit{ex vivo} repair with OA human menisic tissue. While the scaffolds contained lower biochemical content in the repair model than the meniscus tissue control, this may be due to the use of meniscus tissue from end stage OA. It would be interesting to see if the repair responses were improved in non-OA, acutely-injured menisic tissue, which would likely be more amenable for meniscus repair.

SIGNIFICANCE: OA menisic tissue is a readily available and useful source for generating MDM scaffolds that support cellular growth, ECM production, and potentially integrative repair.

Acknowledgments: Research funding for this project was provided in part by NIH grants AR078245 and AR073221. This research was made possible by the donation of allograft tissue from JRF Ortho.