Real Time Fluorescent Microscopy Assessment of PAD4-Mediated NETosis and NET Degradation by S. aureus Nuclease During Nidus Formation on Metal Implants

Youliang Ren1,2, Karen L. de Bentley,1,2,3 Jason Weeks1,2, Thomas Xue1, Ye Shu1, Allie Jia Hui Tay1, Sashank Lekkala1, Shu-Chi A. Yeh1,2, Edward M. Schwarz2,3 and Chao Xie1,2,4

1Center for Musculoskeletal Research, 2Department of Orthopaedics, 3Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA. 4Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA.

Disclosures: None of the authors have any disclosures.

INTRODUCTION: Bone infection remains a catastrophic outcome of orthopaedic surgery,1 and Staphylococcus aureus is the most common pathogen in implant-associated osteomyelitis.2 Currently, the direct host-pathogen interactions that govern nidus formation on the implant remain poorly defined. Additionally, there are no experimental systems that can directly quantify neutrophil and bacteria behavior on the implant in real time. Although the “Race for the Surface” hypothesis remains as dogma to explain the competition between host cells and bacteria for implant colonization immediately post-op, recent literature on soft-tissue infections demonstrated crucial roles for protein arginine deiminase 4 (PAD4)-dependent neutrophil extracellular traps (NET) and S. aureus Nuc degradation of NETs as dominant determinates of immunity and infection respectively.3 To test the hypothesis that PAD4 and Nuc are also operant during nidus formation on metal implants, we developed a novel in vitro real time fluorescent microscopy model with quantitative outcomes of bacteria growth and neutrophil swarming behavior on the implant surface. Moreover, we tested the hypotheses that: 1) neutrophils undergo both lytic and viable NET formation during phagocytosing bacteria on contaminated implants and PAD4 inhibition leads to exacerbated nidus formation and bacterial growth; and 2) Nuc deficient S. aureus fail to form nidi on implants and are rapidly cleared by phagocytic neutrophils.

METHODS: All animal studies were performed under protocols approved by the UCAR. Twelve-week-old Catchup™ red mice that have red-fluorescent neutrophils were sacrificed to collect neutrophils from the tibia and femur via density gradient centrifugation-separation and added to cell culture wells containing etched sterile and S. aureus (EGFP USA300) contaminated titanium pins (Fig 1). Longitudinal scanning confocal microscopy with environment (5% CO2, 37°C) was performed for 6 hours, then SYTOX Blue was added to the co-culture to stain the nucleic acid of dead cell. Scanning electron microscopy (SEM) was performed to evaluate bacteria and biofilm formation and the morphological characteristics of neutrophils on pin surface. GSK484 (PAD4 inhibitor) was added to the culture dish to assess the role of NETosis, and S. aureus strain NucK AH1680 EGFP was used to assess the role of NET degradation. The volume of bacteria and neutrophils was calculated by Imaris to evaluate the swarming ability of neutrophils in different groups. Data are presented as means ± standard error of mean, and statistical significance was determined using a two-way ANOVA, p<0.05 was considered significant.

RESULTS: SEM demonstrated that etching the implant surface (Fig. 1A) guides robust S. aureus growth within the grooves (Fig. 1B) and serves as a prospective region of interest (ROI) for real time fluorescence imaging (Fig1.C). SEM also confirmed NETosis following neutrophil addition to S. aureus contaminated pins (Fig. 1D-H). Real time fluorescent microscopy confirmed neutrophil swarming towards S. aureus on the pin, phagocytosing of bacteria and NETosis (Fig1A, A’). These results demonstrate that swarming neutrophils (Fig2. B) in the USA300 or NucK AH1680 co-cultures show significantly higher swarming and more neutrophils present within the groove of the implant at 1hr, while neutrophils first swarm into the ROI at 3hrs and their numbers increase out to 6hrs producing a modest nidus with low bacteria counts and a predominance of host cells and biomaterial (Fig3 A). PAD4 inhibition results in dramatically increased S. aureus proliferation and reduction of swarming of neutrophils leading to a nidus that is primarily comprised of bacteria in static biofilm (Fig 3B). In contrast, NucK S. aureus that are present within implant groove at 1hr are efficiently cleared by large numbers of swarming phagocytic neutrophils by 6hrs, suggesting that degradation of NETs into biofilm DNA is required for nidus formation (Fig3. C). SYTOX blue staining of these co-cultures confirmed the presence of NETs in and around the nidus, absence of NETs in GSK484 treated cultures, and robust NETs in and around the nidus formed by NucK AH1680 EGFP (Fig3A-C). Quantitative analyses confirmed the increase in bacteria volume and lack of neutrophil swarming in GSK484 treated cultures (Fig3 D, E).

DISCUSSION: Elucidation of the pathogenic mechanisms that allow virulent bacteria to form incalcitrant biofilms and host defenses responsible for protection are critical for novel interventions for implant-associated osteomyelitis. Based on the success of longitudinal intravital imaging of the bone marrow (LIMB) in mice,4 this approach enables direct assessment of bacteria and host cell behaviors in real time. However, our initial LIMB studies identified that the prospective fixed ROI on a random region of the implant surface is a major limitation, and nidus formation is a stochastic process the may or may not occur in the ROI. Thus, our demonstration that surface etching guides nidus formation to the grooves allows for 100% success in the prospective ROI overcomes this obstacle. We also confirm the critical roles of NETs and their remodeling by S. aureus Nuc in the prevention and exacerbation of nidus formation on the implant respectively. Thus, future in vivo studies are warranted to see if these targets can be manipulated to inhibit implant-associated osteomyelitis.

SIGNIFICANCE: Here we describe the first in vitro real time imaging model of S. aureus nidus formation in the presence of phagocytic neutrophils on metal implants quantitative outcomes of bacteria and neutrophil behavior. As this model may recapitulate the initial colonizing events that lead to implant-associated osteomyelitis, this model can be used to characterize antimicrobial surfaces, and assess drug therapies. We also validate the critical roles of NETosis in limiting implant infections, and S. aureus nuclease in NET remodeling to generate cDNA for biofilm formation on the implant.


ACKNOWLEDGEMENTS: This work was supported by the NIH awards R21AR081050, P30 AR069655 and P50 AR072000.

Figure 1. Validation of etch-guided nidus formation and NETosis in the in vitro model of the Race for the Surface. Figure 2. Real time fluorescent microscopy imaging of neutrophil migration and phagocytosis of S. aureus at the nidus with quantification of swarming behavior. Figure 3. PAD4 inhibition increases bacterial growth, eliminates NETs and decreases neutrophil swarming, during nidus formation that is Nuc dependent.

OR5 2024 Annual Meeting Paper No. 965